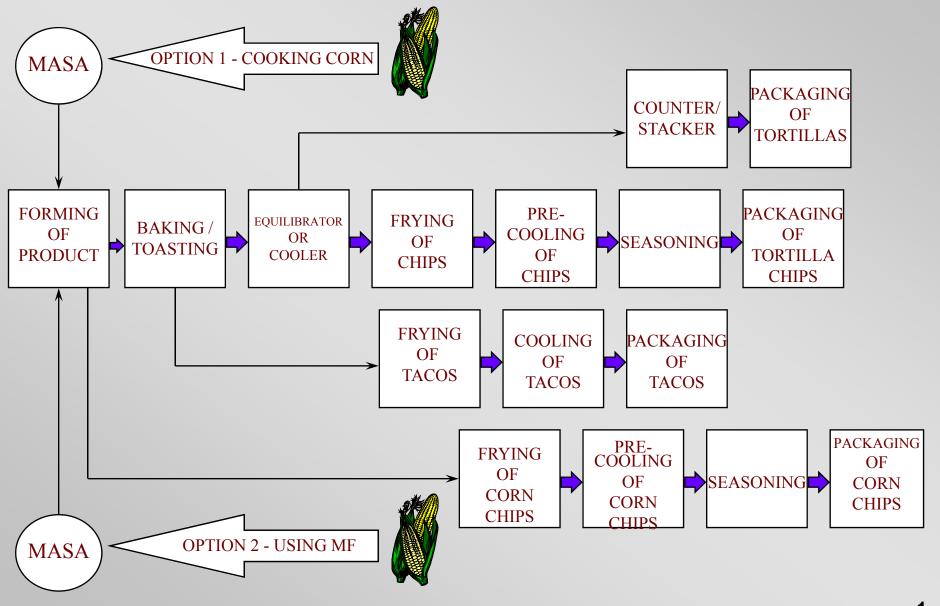
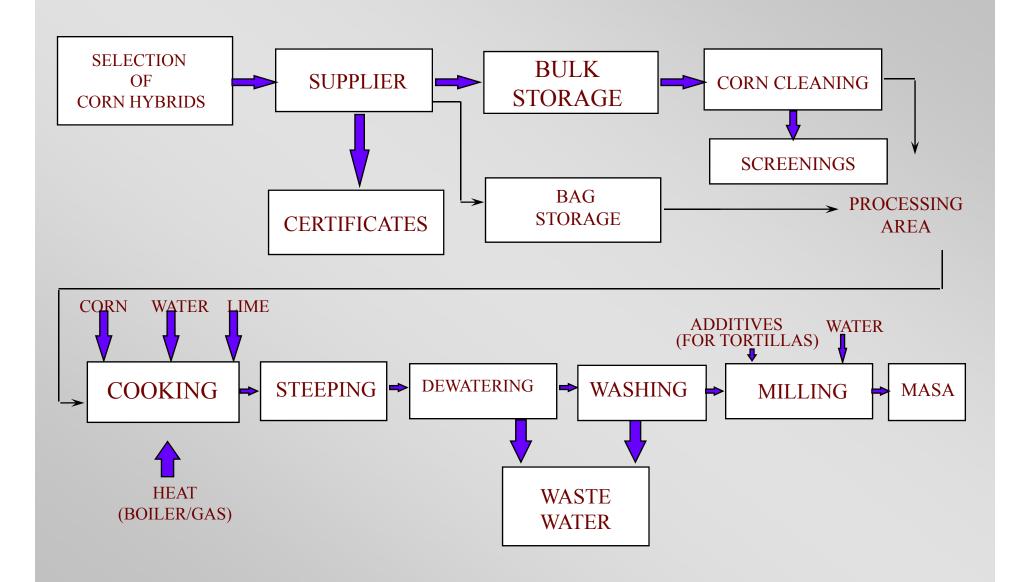
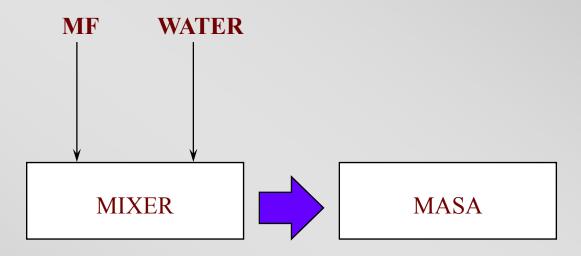
Technology of Corn Cooking and Masa Flours

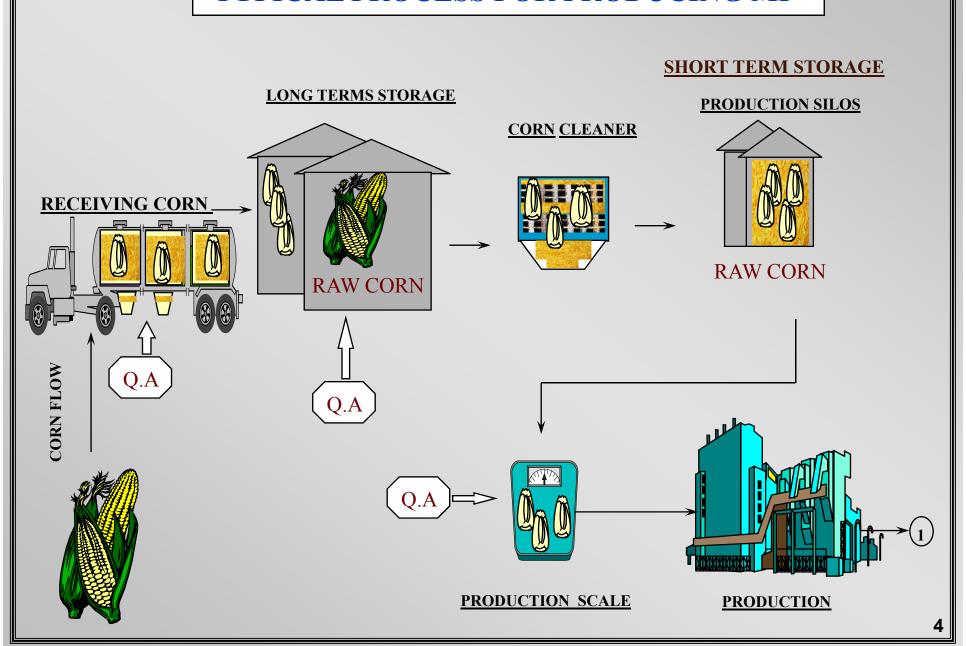

Presented by Kirk O'Donnell at TIA Tech 2015

by Joe Riley


AZTECA MILLING L.P.

Special thanks to Dr. Sergio Serna Saldivar and Dave Waters


TORTILLA / SNACK PRODUCTS PROCESSING FLOW


OPTION 1: COOKING CORN

OPTION 2 - USING INSTANT CORN MASA FLOUR (MF)

TYPICAL PROCESS FOR PRODUCING MF

TYPICAL PROCESS: CONT. STEEPING COOKER COOLER SIFTERS Q.A **CORN** MASA **FLOUR FLOUR SILOS** CORN MASA TRUCK (900 BAGS) **TOTEBAG** 25 LB. /BAG 1850 LB. **FLOUR SECURITY SYSTEM** C **CORN** K 50 LB./BAG Α 4.4 LB./RETAIL G MAGNETS **PROOF** METAL **SIFTERS DETECTORS** N RAILROAD CAR **BULK OR TANKER**

SELECTING AND HANDLING THE RIGHT CORN HYBRIDS:

•INTENSIVE PROGRAM:

- -ACQUISITION OF QUALITY CORN FROM DIFFERENT GROWING AREAS
- -INVOLVES DIFFERENT INDIVIDUALS AND ORGANIZATIONS
- -LONG TERM

•USE OF ONLY APPROVED HYBRIDS:

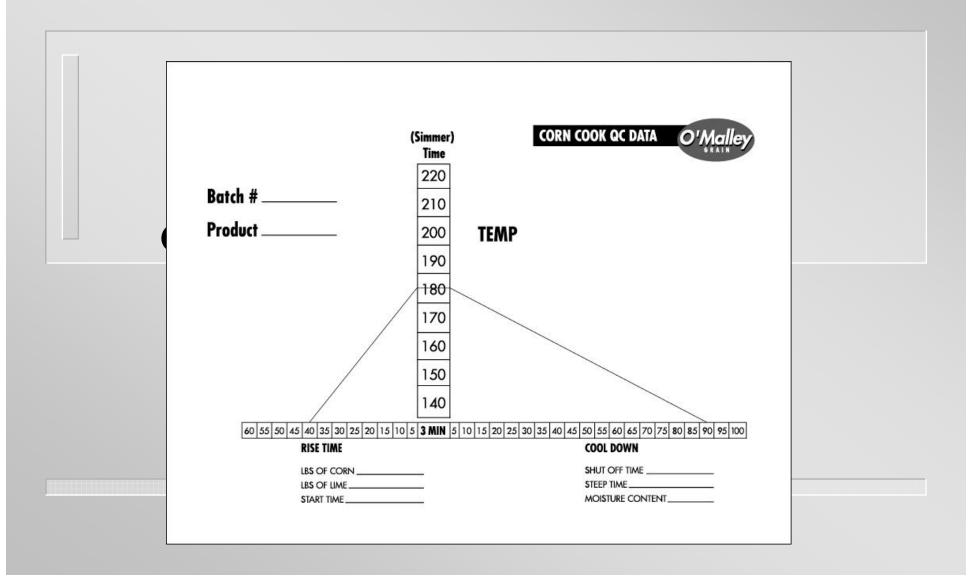
- -TO PRODUCE THE HIGHEST QUALITY FINISH PRODUCT
- -TO OBTAIN THE PROPER MILLING CHARACTERISTIC
- -SHOULD HAVE GOOD AGRONOMIC CHARACTERISTICS

SELECTING AND HANDLING THE RIGHT CORN HYBRIDS:

•LONG TERM STORAGE OF CORN:

- -PROPER MATURITY
- -SEGREGATION OF CORN BY ITS CHARACTERISTICS
- -PEST CONTROL PROGRAM

•FIELD TEST PROGRAM:


- -FOR NEW HYBRIDS AS WELL AS FOR APPROVED ONES
- -CONTINUOUS TESTING PROGRAM (LONG TERM)
- -INVOLVES: MF MANUFACTURERS, SEED COMPANIES, UNIVERSITIES, GRAIN ELEVATORS AND FARMERS

(SLIDES)

Cooking considerations

- In general, nixtamal should have 50% moisture- corn tortillas and 48% moisture- tortilla chips
- Nixtamal for tortillas is cooked more thoroughly to achieve higher water absoprtion, starch gelatinization and a softer nixtamal texture.
- Nixtamal for corn and tortilla chips is cooked less so to produce a coarser and less moist masa and less moist tortilla before frying.
 This is required to absorb less oil during frying.
- Quenching or not?

Control of Cook

Production Issues

Cooking for Corn Tortillas

- ≪ Relative overcook
- ≪ Relative underwash
- Quality
- ≪ Yield
- **⋄** Moisture content/particle size dist.
- ≪ pH

Production Issues

Cooking for Chips

- ≪ Relative undercook
- ≪ Relative overwash
- ≪ Quality oil absorption
- ≪ Oil degradation
- **⋄** Moisture content/particle size dist.
- ≪ pH

Steeping

- Step necessary to allow water and lime diffusion into the grain structure. Grain becomes softer and therefore is easier to grind it into masa.
- During steeping, the pericarp continues to degrade and detaches from the nixtamal.
- Steeping is necessary to enhance the liberation of starch granules during stone grinding.

Nixtamal Washing

- Operation required to eliminate loose pericarp, excess lime and steep liquor or nejayote.
- The operation is usually done by nixtamal stirring or by spraying pressurized water.
- Washing affects nixtamal pH (tortilla microbial stability), tortilla flavor and color and yield.
- Nixtamal washing decreases nixtamal temperature in dry masa flour operations.

Stone Grinding

- Objective: produce masa that meets particle size requirements, moisture and degree of starch gelatinization.
- Machinability
- Equipments: stone mills equipped with natural (volcanic) or artificial (aluminum oxide) stones.
- Control critical factors

Stone carving

- Degree of nixamal cooking

Pressure between stones

- Water addition

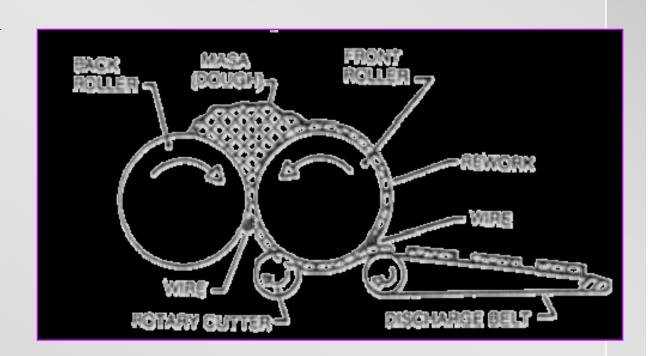
Stone Grinding

 Quality Control: particle size distribution, masa moisture and texture (cohesiveness, stickiness etc)

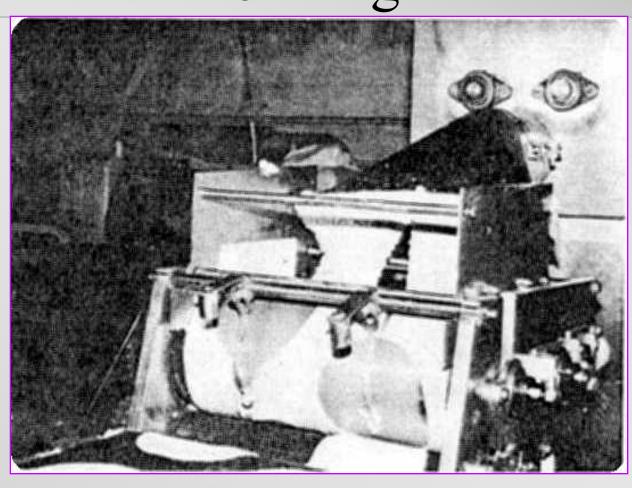
Masa Cohesiveness

- When nixtamal is ground into a masa its structure is disrupted by abrasion or friction:
 - A cohesive masa is form mainly due to the liberation of pregelatinized starch granules.
 - Undercooked nixtamal yields a noncohesive masa.
 - Overcooked nixtamal yields a sticky masa

Sheeting and Masa Forming


- Overworking masas in the hopper generally result in sticky doughs.
- Objective: necessary work required to form masa pieces with the desired size and thickness (weight) and the minimum number of defects.
- Faulty lime cooking and/or stone grinding are observed in this particular step.
 - Equipment: extrusion and sheeting rolls.

Masa Feeder



Sheeting and Tortilla Forming

- Sheeting rolls (teflon coated)
 - Different cutters
 - Thickness control

Masa Sheeter and Tortilla Forming

Baking

- Objective: heat treat the pre-formed masa to yield tortillas (cohesive, flavor development).
- Equipment: three-tier gas-fired oven.
- Control Factors: residence time, temperature on each tier and moisture.
- Operation is considerably different when baking table tortillas and chips.

Chemical changes:

- Moisture loss
- Starch gelatinization (tortilla texture).
- Flavor and color development (Maillard Reactions)
- Death of all microorganisms.

Three Tier Gas Fired Oven

Cooling

- Objective: decrease product temperature in preparation for frying or packaging.
- Equipment: cooling racks or moving bands.
- Tortilla shelf life is greatly affected by this operation:
 - Cool down tortillas to 86°F
 - A good equipment sanitation and personnel hygiene is required.
 - Critical operation for tortilla chip production

Quality Considerations for Using Masa Flour (MF):

USING MF OFFERS THE FOLLOWING ADVANTAGES:

- •PROCESS IS EASIER TO CONTROL (SIMPLER)
- **•UNIFORMITY IN FINISH PRODUCT:**

FOR FRIED PRODUCTS:

OIL ABSORPTION, BLISTERING, TEXTURE, pH, COLOR AND MOISTURE

FOR TORTILLAS:

HIGHER WATER RETENTION

BETTER RETENTION OF WATER THROUGHOUT SHELF-LIFE

SOFTER PRODUCT

QUALITY CONSIDERATIONS:

- •QUICKER RESPONSE TO PROCESS ADJUSTMENTS
- •NO UNCERTAINTIES:

DUE TO CHANGES IN RAW MATERIAL LOTS:
FROM SEASON TO SEASON
FROM SHIPMENT TO SHIPMENT

- •QUALITY ASSURANCE CERTIFICATES PER SHIPMENT
- •QUALITY PROGRAM

(SLIDES)

DIRECT IMPACT ON OPERATIONAL COSTS:

USING MF ALSO OFFERS THE FOLLOWING ADVANTAGES:

•REDUCTION IN MANPOWER REQUIREMENTS:

- -LESS LABOR MANUFACTURING
- -LESS LABOR IN SUPPORT (MAINT., SANITATION, CORN

CONSERVATION, ETC.)

-LESS SKILLED LABOR

•REDUCTION IN UTILITIES COSTS:

- -LESS CONSUMPTION OF WATER
- -LESS CONSUMPTION OF GAS
- -LESS USAGE OF ELECTRICITY

DIRECT IMPACT ON OPERATIONAL COSTS:

•REDUCTION IN EQUIPMENT INVESTMENT COST

- -REDUCTION ON SPARE PARTS
- -REDUCTION IN PROCESSING SPACE
- -ELIMINATION OF WASTE TREATMENT COSTS
- •IMPACT ON CASH FLOW (FINANCIAL BURDEN DUE TO CORN, EQUIPMENT, INSTALLATIONS, PAYROLL)
- •BETTER YIELD (RAW MATERIAL TO FINISH PRODUCT)

DIFFERENCE IN YIELDS:

TYPICAL YIELD FOR TORTILLA CHIP PRODUCTION:

COOKING CORN: 1 TO 1.06 -1.11

USING ICMF: 1 TO 1.18 - 1.23

TYPICAL YIELD FOR TABLE TORTILLAS:

COOKING CORN: 1 TO 1.45 - 1.50

USING ICMF: 1 TO 1.70 - 1.80

+ MOISTURE CONTENT IN RAW MATERIAL

CORN · 14 - 15 %

MF: 10 - 11 %

- + LOSS OF CORN SOLIDS IN WASTE WATER: UP TO 5 -10 %
- + FOR TORTILLAS: HIGHER WATER CONTENT IN FINISH . PRODUCT: 48 % VS. 44 %.

OTHER IMPORTANT CONSIDERATIONS:

- •SIMPLER PROCESS
- •BETTER SANITATION ENVIRONMENT
- •REDUCTION IN DAILY START-UP TIME
- •FLEXIBILITY OF PRODUCTION PLANNING:
 - -SHORT LEAD TIMES
 - -SHORT RUNS
- •FLEXIBILITY TO PRODUCE SPECIALTY PRODUCTS:
 - -VITAMINS
 - -OTHER INGREDIENTS
- •TECHNICAL SUPPORT:
 - -DEVELOPMENT OF MF TO SUIT CUSTOMER NEEDS
 - -TROUBLESHOOTING