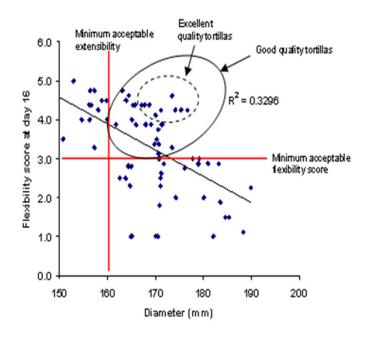
"Tortillas that are Freeze-Thaw stable and won't stick"

Miguel Guzman (ICI Foods, Inc.)¹ PentaJos Inc. (Industry Consultant)²

1) ICI Foods Arlington, TX office – mguzman@icifoods.com 2) Priv. Consultant, Downey, CA – tjondiko@gmail.com


Introduction

- Tortillas are currently the most widely accepted type of bread product in the USA.
- Sales already exceeded \$9.5 Billion in 2014 (www.companiesandmarkets.com)
- Refined wheat products are popular due to appealing sensory attributes.
- Market trends / consumer demand are asking for less use of chemical additives and synthetic ingredients.
- Increasing consumer health concerns ask for 'cleaner label' food options.
- Globalized trade opportunities allow manufacturers to sell frozen/fresh type products into different continents – let alone countries... (e.g. US manufactured tortillas selling in Ireland)

Good Quality Tortillas

Tortillas must meet consumer expectations.

- Physical parameters (Soft, pliable).
- Good diameter, uniform, toast marks and longer shelf life periods.
- Non-Sticking (this problem can really affect repeat sales!)

Consumer's perspective:

GOOD QUALITY TORTILLAS are flexible, don't crack or tear, taste good and DON't STICK. (Waniska et al 2004, Jondiko et al 2016).

What Causes Sticking

CONSUMER EXPECTATIONS DRIVE THE SALE of YOUR PRODUCTS ... Hence, manufacturers must prevent 'stickiness' in tortillas.

- ✓ Under mixing of dough.
 - ➤ Operator forgot to add enough water
 - ➤ New crop (year) flour may require more water for gluten development
- ✓ Over mixing of dough.
 - ➤ Gluten is denatured and cannot hold water
 - Too much heat generated during mixing makes dough weak.
- ✓ Improve freeze-thaw protocol.
 - > Uncontrolled temperature changes cause water migration
 - ➤ Overdosing or lack of adequate ingredient quantities to hold water during freeze-thaw process will contribute to stickiness.

Industry tested solutions

Gums

- High molecular weight compounds which contribute to cohesiveness
- Some act as dietary fiber which the body has no ability to digest.
- Act as water-binders, texturizers, and adhesives
- Water solubility of the gums is key to functionality in tortillas.
- Gums dissolved in water increase dough viscosity and elasticity.

Emulsifiers

- ✓ Create a stronger gluten structure by increasing binding sites.
- ✓ Contribute to stability of lipid-water systems
- ✓ Form a complex with gluten thereby improving dough machinability.
- ✓ Contribute to the 'soft' texture of flour tortillas
- ✓ Contribute to the obtention of uniformly shaped tortillas
- √ Help decrease 'rubberiness' and sticking of tortilla products

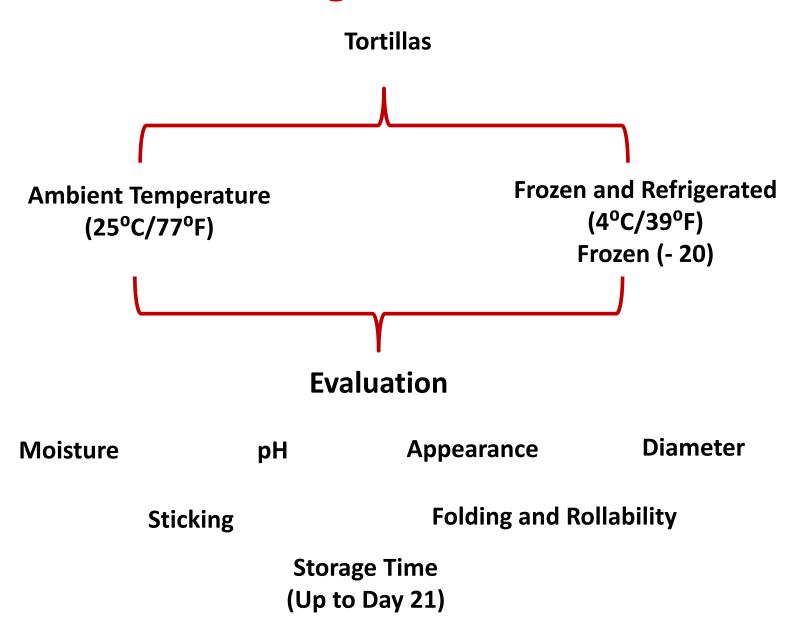
The best starch-complexing ingredient is a Distilled Mono and Diglycerides – well proven by the industry today.

Overall objective

Evaluate the functionality of gums and emulsifiers in freezethaw cycles and prevent 'stickiness' in tortillas

Specific objectives

- ✓ Explain the use of gums and Emulsifiers as functional ingredients in tortillas and flat breads.
- ✓ Understand the effectiveness of selected gums and emulsifiers in tortillas


Experimental Design

•All tortillas were made with these components and functional ingredients:

Flour, Shortening, Salt, Sodium Bicarbonate, Sodium Acid pyrophosphate (gums and emulsifiers added to prevent sticking)

- The Control formulations did not contain gums nor emulsifiers
- The test formulations included these ingredients
 - •Guar Gum, Xanthan Gum, CMC, Tara Gum
 - Mono and di-glycerides

Testing Procedure

Guar Gum

Guar Gum Test - Results

	pН	\mathbf{a}_{w}	Moisture (%)	Diameter (mm)	Rollability (Day 21)	Sticking Test ^c
Control - No Gum	5.4	0.9458	31.77	174	3	0 of 10
Guar Gum A (1:1)	5.4	0.9418	30.26	175	3	0 of 10
Guar Gum B (0.75)	5.4	0.9467	31.34	173	3	0 of 10

^cSticking evaluated based on the number of tortillas that were not easy to seperate after being subjected to a 5lbs weight.

Control - NO Guar Gum

Guar Gum A and B

Guar Gum

Why is Guar gum the most common hydrocolloid used in tortilla processing

- Guar gum absorbs water during dough mixing and retains it during baking.
- Improves dough machinability and development
- Superior finished product quality
- Provides strength, flexibility & pliability
- Prevents sticking of tortillas

CONTROL (No Gum)

GUAR GUM

Xanthan Gum

Xanthan Gum Test - Results							
	рН	Moisture (%)	Sticking	Status			
	pm	Moisture (70)	Test ^c	Status			
Control - Xanthan	5.42	33	1 of 10	Pass			
Xanthan B	5.49	33	1 of 10	Pass			
Xanthan C	5.48	32	6 of 10	Failed			

- Xanthan gum prevents sticking and provides freeze-thaw stability. However consideration should be given to:
 - Properties of the Xanthan gum
 - How the gum was processed (process technology)
 - Particle size
 - Viscosity

CMC Gum

CONTROL (No Gum)

CMC Gum

- CMC gum provides good freeze-thaw stability
- •To prevent sticking it needs a synergist combination with other gums

Mono and Diglycerides

Mono and Diglycerides Test

Mono -& Di	рН	Rollability (Day 30)	Sticking Test	Texture (Day 30)
Mono and Diglyceride A	6.0	3.0	3 of 10	Soft
Mono and Diglyceride B	6.1	3.0	5 of 10	Zapping & cracking
Mono and Diglyceride C	6.0	3.0	0 of 10	Soft

- Mono and Diglyceride can prevent sticking and provides freezethaw stability. However consideration should be given to:
 - ✓ Source (palm, or soybean oil)
 - ✓ Ratio of Mono and Diglyceride molecules
 - ✓ Particle size
 - ✓ Heat stability
 - ✓ Acid value

Synergistic Gum Combinations

- 1) Guar, Locust Bean, & Tara Gums all help prevent tortilla sticking
- 2) CMC Xanthan at selected ratio can help prevent sticking
- 3) Alginate does not help control sticking
- 4) Psyllium & CMC appears to intensify sticking.
- 5) Appears that Alginate, Psyllium & CMC are not suitable for tortilla applications.

Thank You

Miguel Guzman

Sales Representative, ICI Foods / Texas mguzman@icifoods.com T: 281•769•1330 M: 281•543•1018 2501 Avenue J, Suite 102, Arlington, TX 76006

T: 800•523•7902 E: orders@icifoods.com www.icifoods.com

