

Operational Efficiencies

Michael (Chad) Minor

Define Operational Efficiencies

Measure of process capability to deliver products in the most cost effective manner to deliver the highest quality and service.

Success: Can be meeting a metric or working towards one!

Examples of KPI's

- Throughput lbs. / Line Hour
- Crewing Man Hours / Line Hour
- Yield Material Outputs / Material Inputs

Benefits of measuring Operational Efficiencies

- Budgeting
- Personnel Morale
- Improved Safety
- Improved forecasting
- Improved Customer fulfilment
- Improved Quality
- Predictive capacity availability
- Predictive problem solving
- Benchmarking
- Establish accurate cost
- * All this leads to improved Profitability!

Benefits of measuring operational efficiencies

Ingredient cost – Yield – Accurate ingredient warehousing and purchasing - accurate product costing

Labor Cost – Accurate staffing needs

Overhead Cost – Maximize volume to reduce cost

Depreciation – Lease cost – maintenance

Selling Expense –

Maximize truck scheduling – Reduce or Eliminate Demerge charges

Reduced LTL – (Less than full load)

Less Inventory – Reduced warehousing (Just in time)

Establishing
Operational
Standards
3 Types of
Standards

Demonstrated – Throughput, Crewing, and Yield based on past performance.

Costed – Based on the costing point of the product. (break even)

Engineered Standard – A Scientific approach that takes into account equipment ratings, product specifications, processing steps, and labor measurement to establish potential throughput, crewing, and yield.

Establishing Demonstrated

- Example:
- Line x
- Product 1
- Time line over the last 26 weeks.
- Line Hours used
- Man hours used
- Pounds produced
- Down time incurred

Line	>	(
Product	1	
Date Range:	1/1/2019	7/2/2019
Total Line Hours	2,496	
Total Labor Hours	12,480	
Total Down Time (hrs)	156	
Total Pounds Produced	2,496,000	
Ingredient use	1,747,200	
Demonstrated Pounds / Line Hour		1000
Demonstrated Crew / Line Hour		5
Demonstrated Yield		142.86%

Establishing Costing Standard

- Example:
- Break your production Cost into Overhead cost (Fixed & Variable)
- Labor Cost
- Ingredient cost
- Etc.
- Determine your price point.
- Determine the line hours, labor hours, and ingredient cost needed to meet your cost goals.

Cost Components	\$ / Pound
OH cost	\$ 0.67
Labor Cost	\$ 0.08
Ingriedient Cost	\$ 0.25
Expected Cost	\$ 1.00

Rates:		
Overhead Rate	\$1,000	
Labor Rate	\$15.00	
Ingriendnt	0.25	@ 125% Yield
Labor Required	8	
Labor cost / Hour	\$120.00	
Throughput Needed	1029.854	lbs / Hour
Expected Cost	\$1.00	/lb

Establishing Engineered Standard

- Example:
- Determine the capabilities of each piece of equipment for each product
- Determine Yield
- Using labor measurement, determine labor required

Through	nput Evaluation
Process	Throughput (lbs /
Step	hr)
Mixing	2000
Baking	2000
Cooling	2000
Packaging	2000

Yield Evaluation		
Yield		
	125%	
	90%	
	95%	
	99%	

	2000	
Baking	1800	Bottleneck
Cooling	1900	
Packaging	1980	
Through	put Evaluation \	W/ Bottleneck
	Throughput	
Process Step	Lbs	Crewing
Mixing	1440	2
Baking	1800	

2500

1710

1692.9

Throughput Evaluation W/ Yeild

Process Step Lbs

Mixing

Cooling

Packaging

Throughput

Labor Evaluation		Unit of Measure
Process		
Step	Crewing / Rate	
Mixing	Station Filled	
Baking	Station Filled	
Cooling	No Requirement	
Packaging	500	lbs / Hr.

How to improve operational Efficiencies

First – You have to measure!

Honest self evaluation is the key!

Identifying the gaps between actual performance and Standard

• Line Speed – Quality – Crewing - Downtime

Training / Education

- Standard Operating procedures
- Standardized work instructions
- Standardized Data collection

Frequent Feedback

Maintenance & Workorder Program

Summary

- It begins with measuring!
- Having a winning attitude!
- Establishing standards
- It ends with SUCCESS!

