Enzymes For Specific Improvements in Tortilla Application

Anita Srivastava, Ph.D., CFS

© Kemin Industries, Inc. and its group of companies 2019. All rights reserved. 🖤 Trademarks of Kemin Industries, Inc., U.S.A. Certain statements, product labeling and claims may differ by geography or as required by government requirements.

Tortilla market is rapidly expanding.....

According to Future Market Insights:

Expected global tortilla market 12.3 billion by end of 2028

Source: https://www.prnewswire.com/news-releases/tortilla-market-is-projected-to-be-valued-at-us-12-324-4-mn-by-2028-end-future-market-insights-818122774.html

© Kemin Industries, Inc. and its group of companies 2019. All rights reserved. ^{® ™} Trademarks of Kemin Industries, Inc., U.S.A. Certain statements, product labeling and claims may differ by geography or as required by government requirements

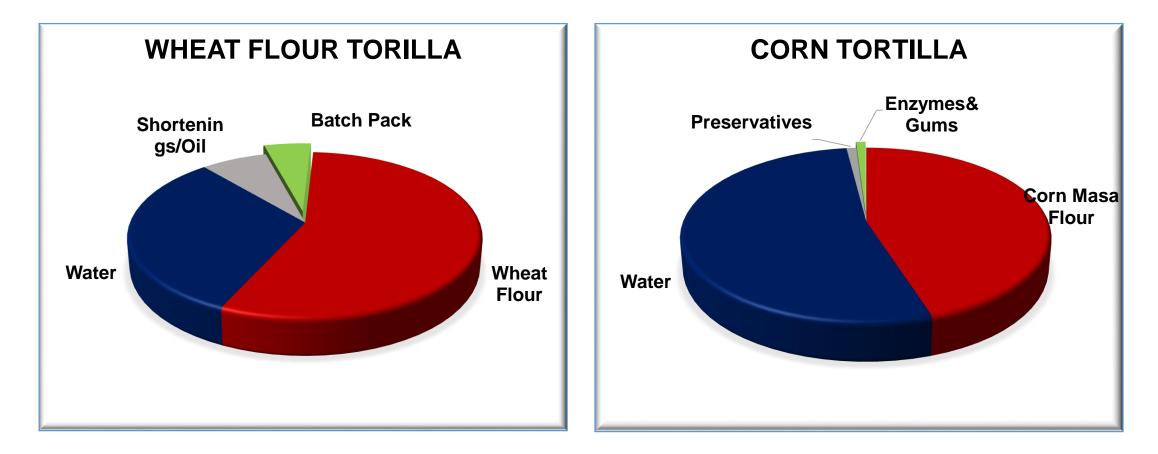
Tortilla market is rapidly expanding.....

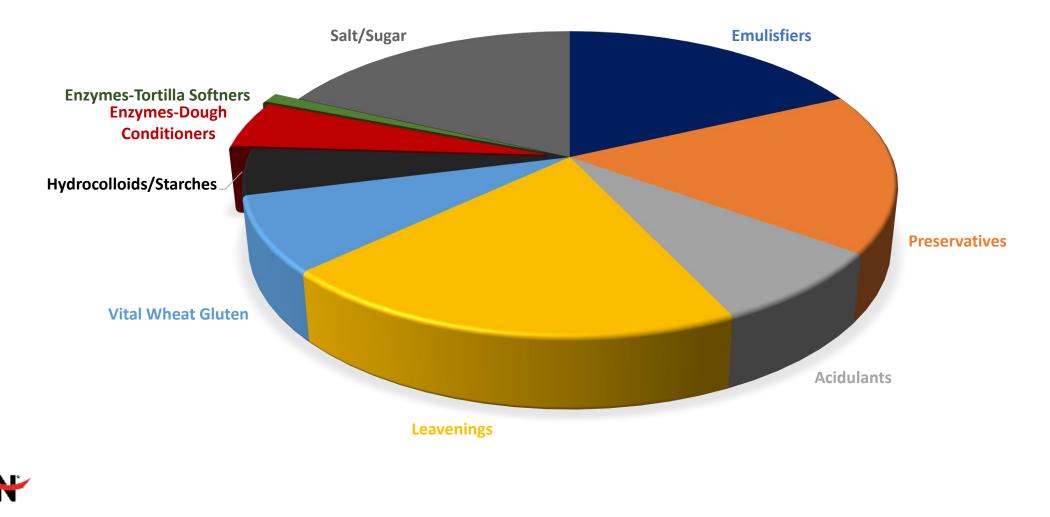
Key driving factors for increasing demand include:

- Innovative flavors
- Health deliverables
- Small portion size of tacos
- Varieties (e.g., corn chips,
- corn tortilla, flour tortilla,
- wraps, etc.)

Ideal Tortilla Characteristics

- Uniform round shape
- Evenly distributed blisters
- White with opacity or translucence
- Uniform edges with soft texture
- Excellent rollability/flexibility
- Good foldability
- Resistance to cracking/breaking
- No zippering; no sticking
- Optimal shelf-life (NO MOLD)





Basic Composition of Tortillas

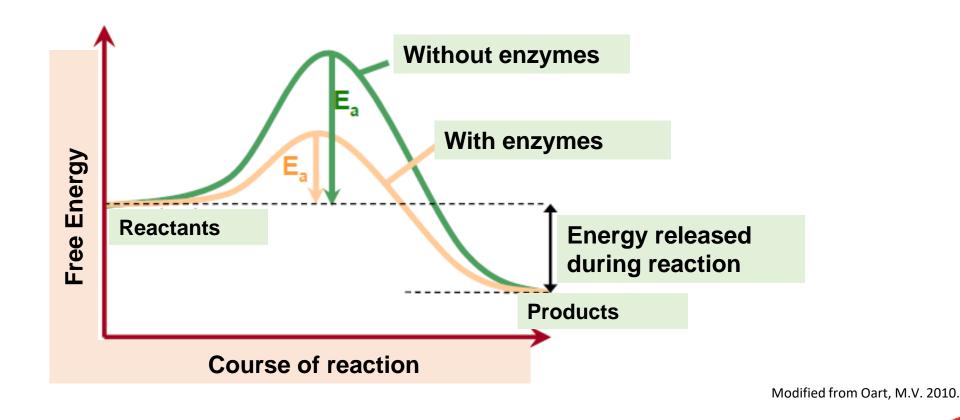
Basic Composition of Batch Pack

© Kemin Industries, Inc. and its group of companies 2019. All rights reserved. ® Trademarks of Kemin Industries, Inc., U.S.A. Certain statements, product labeling and claims may differ by geography or as required by government requirements.

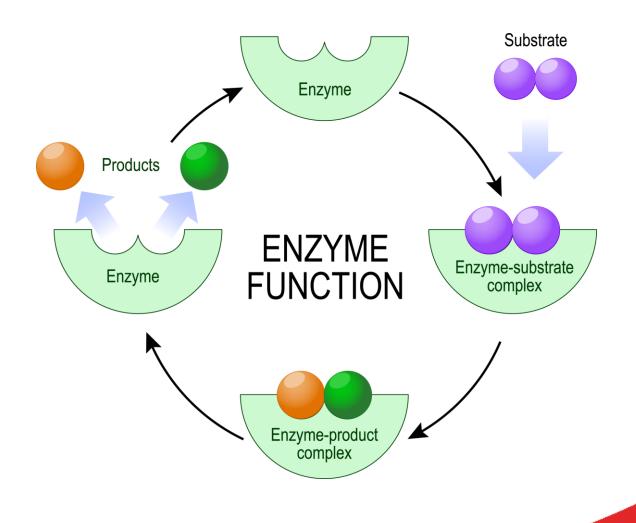
KEM

What are Enzymes?

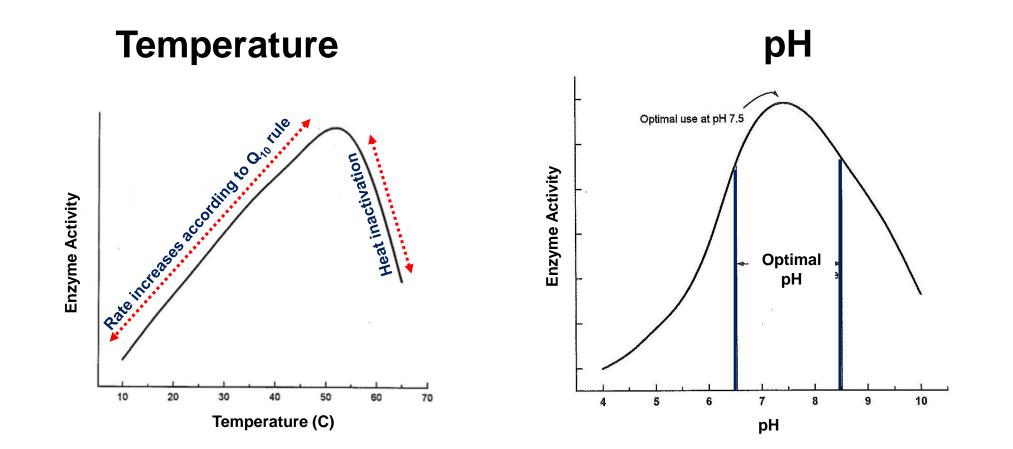
- Enzymes are proteins that function as biocatalysts
- Control vital metabolic processes and exist in all living organisms
- Some of them break down complex food ingredients into simpler ingredients
- Work under relatively mild conditions


Sources of Commercial Enzymes

	Sources	Enzymes
1	Microbial	Bacterial, Fungal, Yeast
2	Plant	Barley Malt, Papain, Bromelain, Soybean
3	Animal	Trypsin, Rennet



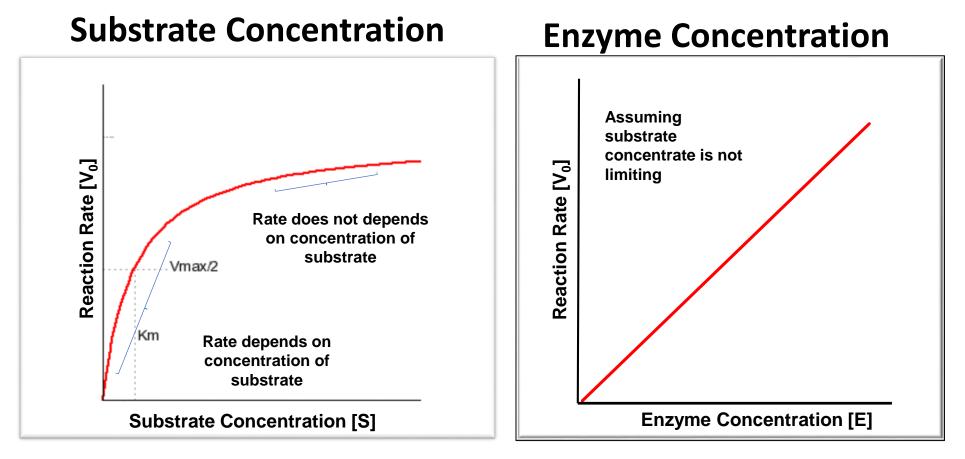
Speed up chemical processes – lower the activation energy needed for reaction to occur


Enzyme Kinetics- Induced Fit Model

- Enzymes are very specific
- Enzymes have one or more active sites
- Active sites continuously reshape itself until substrate is completely bound

Factors Affecting Enzymes

Adapted from Purich, D. L. 2011


Factors Affecting Enzymes

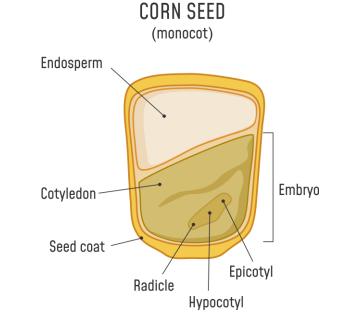
Temperature Characteristics of Starch Degrading Enzymes				
Source	Туре	^a T _{Optimum} (°C)	^b T ₅₀ (°C)	
Sound wheat	α-Amylases	60-66	75	
Sound wheat	β-Amylases	48-51	60	
Malted wheat	α-Amylases	55-60	65-75	
Fungal	α-Amylases	50-60	60-70	
Fungal	Glucoamylase	40-45	65-70	
Bacterial α-Amylases		70-80	85-90	
^a T _{Optimum:} Temperature of optimum activity (pH 5-7); ^a T _{50:} Temperature at which 50% of the enzyme is inactivated (pH 5-7);				

Hammer, 1992.

Factors Affecting Enzymes

KEMIN

Adapted from Purich, D. L. 2011


Enzymes in Bakery

Enzyme Type	Substrate	Function in Tortilla
Amylases	Starches	Modification of gelatinized starch
Pentonases	Hemicellulose, Xylan	Modification of Pentosan
Proteases	Proteins	Prevent strong gluten network;
Oxidases	Proteins	Improves gluten strength
Transglutaminase	Proteins	Improves gluten strength
Lipases/phospholipases	Lipids	Help to generate emulsifier like structure
Phytase	Phytic acid	It breaks down phytic acid present in bran
Asparaginases	Asparagine	Removes precursor of acrylamide

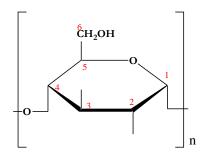
Austin, 2016

Major Ingredients: Wheat & Corn Flour

ENDOSPERM GERM

ANATOMY OF A GRAIN

	Endosperm	Starch	Protein	Quality of Protein
Corn	83%	78-85%	9-18%	47% is zein protein; insoluble in water
Wheat	82%	65-75%	9-15%	80% is Gluten; known for water absorption


Plant Foods Hum Nutr (2000) 55: 15


Starch

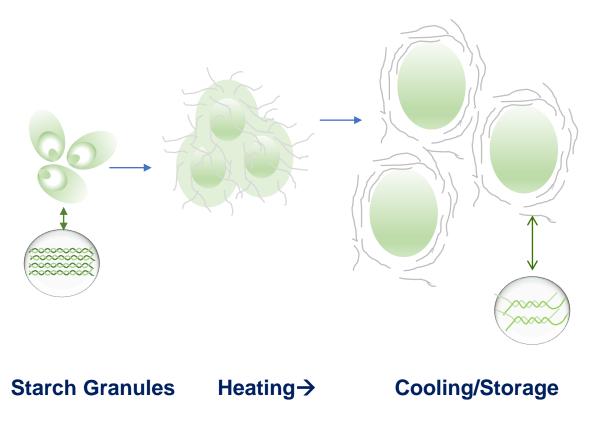
Starch has two components:

- **Amylose** Linear glucose polymer **(20-25%)**:
- α -linked glucose units (Glucan) α , 1 \rightarrow 4 linkage

- Amylopectin Branched glucose polymer (75-80%):
- α , 1 \rightarrow 4 and α , 1 \rightarrow 6 linked glucose units (Glucan)

Starch

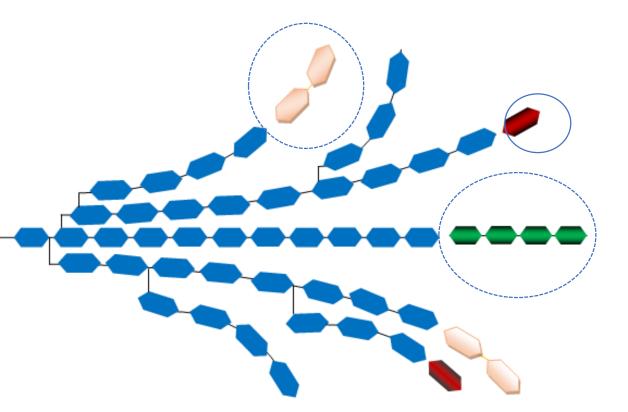
• **Amylose** Linear glucose polymer (20-25%):


Amylopectin Branched glucose polymer

Retrogradation of Starch Molecules

Starch Water Interaction

- <u>Gelatinization</u>: In the presence of water and heat starch absorb water and swells up; loses its crystalline structure, viscosity increases
- <u>Retrogradation</u>: After gelatinization starch tend to regain its crystalline structure



Delcour et al., 2005

Enzymes for Starches

Activity of various amylase

Enzyme Type	Products Produced
α-amylase	Maltose/ Oligosaccharides
β-amylase	Maltose
Amylo- glucosidase	Glucose
G4 Amylase	Malto-oligosaccarides
Maltogenic amylase	Maltose and Maltodextrins

Oart,2010

Impact of Retrogradation on Tortillas

Retrogradation (staling) is a major concern for corn and flour tortillas resulting in...

- Loss of freshness/softness
- Hardness
- Loss of foldability

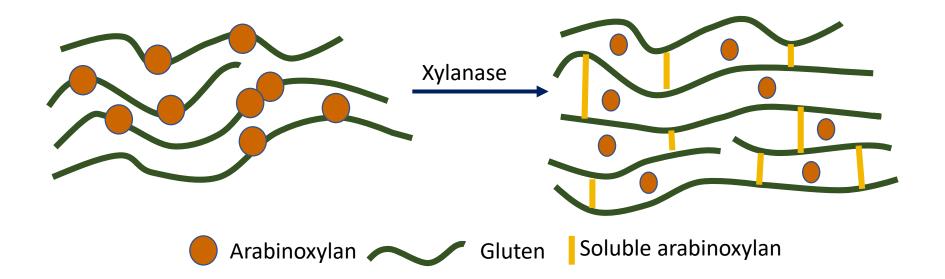
Impact of Retrogradation on Tortillas

Retrogradation (staling) is a major concern for corn and flour tortillas resulting in...

Corn Tortilla without enzymes

Corn Tortilla with enzymes

Pentosans (e.g., arabinoxylans)


- Mostly insoluble
- Interfere with gluten development due to their strong water absorption

Composition	%	Distribution of Water in Dough
Starch	58	26.4
Damaged Starch	9.2	19.1
Gluten	14	31.2
Pentosan	1.5	23.4

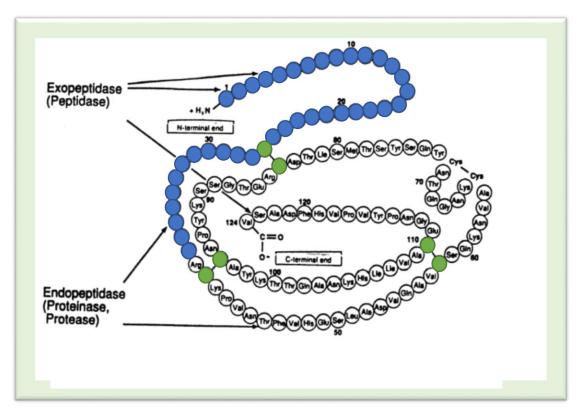
Li et al., 2012

Enzymes - Xylanases

- Xylanases hydrolyze the xylan
- Xylan breakdown releases water for distribution to starch and gluten
- Dough becomes softer and easier to process
- Reduces mixing time

Anderson, C. and Simsek, S. (1991)

Enzymes – Protein (Gluten)

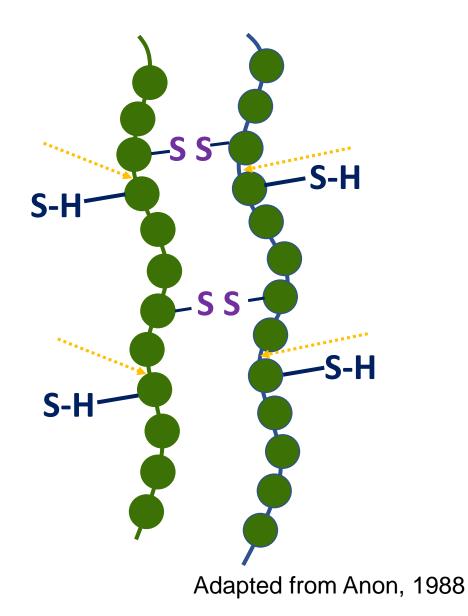

- Gluten is major protein present in wheat flour
- Gluten is subdivided into :
 - 1. Gliadins act as plasticizer and contribute to dough viscosity and extensibility
 - 2. Glutenin contribute to the dough strength, elasticity and resistance to extension
- Gluten network gives viscoelastic properties (extensibility and elasticity) to dough properties
- Strong gluten matrix is created by disulfide linkages between the amino acids of polypeptide chain

Wieser, 2007; Delcour, 2009

Enzymes – Protease

- Protease is proteolytic enzyme which can be subdivided into exopeptidase and endopeptidase
- Exopeptidases cleave the peptide bond proximal to the amino or carboxy termini of the substrate
- Endopeptidases cleave peptide bonds distant from the termini of the substrate

Adapted from Anon, 1988


Enzymes – Protease

Gluten quality is determined by:

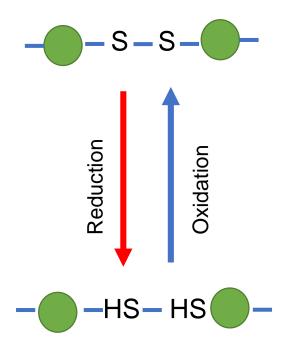
- Glutenin polymer structure
- Size distribution and subunit composition
- Gliadin/glutenin ratio

Protease can help:

- Reduces the size of glutenin polymers and redistribute SH/SS ratios
- Dough softening, reduced mixing time and improved dough machinability

Enzymes – Protease

- Protease improve softness, dough machinability and handling
- Reduces mixing time and improves water absorption
- "Cleaner" replacement for L-cysteine or sodium metabisulfite



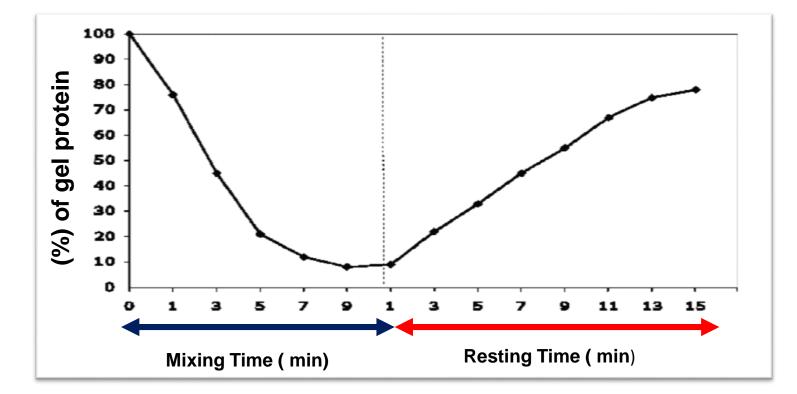
Enzymes – Glucose oxidase

Glucose oxidase – Oxidizing agent

- Glucose oxidase indirectly oxidize SH into SS by oxidizing glucose and generating hydrogen peroxide and promote disulfide linkages
- 2. Gliadin–glutenin crosslinking during baking by decreasing the level of free SH groups
- 3. Minimize SH/SS interchange reactions

Enzymes – Glucose oxidase

Glucose oxidase: Oxidation of flour thiol with oxidases


	Reactive SH-Groups (µmol/g)
Control Flour	1.925
Glucose oxidase (1000 U/Kg) Supplement flour	0.379
Glucose oxidase (1000 U/Kg)+ Sulfhydryl oxidase (77 U/Kg) Supplement flour	0.363

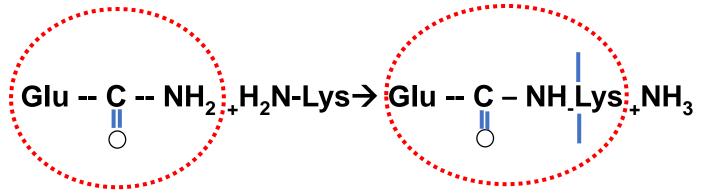
KEMIN

Haarasilta et al, 1991

© Kemin Industries, Inc. and its group of companies 2019. All rights reserved. ^{© ™} Trademarks of Kemin Industries, Inc., U.S.A. Certain statements, product labeling and claims may differ by geography or as required by government requirements.

Enzymes – Dough Structure

Breakdown and rebuilding of gel protein during dough mixing and dough resting

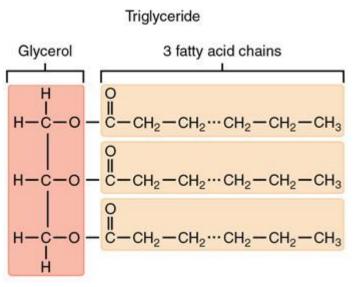


Schofield et al, 1991

Enzymes – Transglutaminase

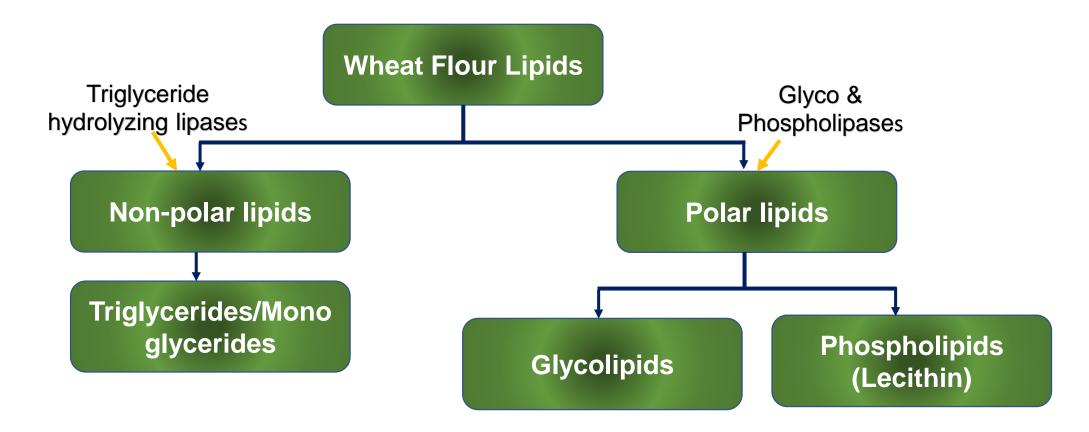
Catalyzes formation of cross links between the γ -carboxyamide group of peptide bound glutamine residues and various amines

- Improves the protein network
- Increases water holding capacity
- Increases water absorption
- Viscoelastic and thermal properties



Song et al, 2010

Enzymes - Lipase


- Hydrolyze triacylglycerol (TAG) and produce monoacylglycerols (MAG), diacylglycerol (DAG), Glycerol and free fatty acid
- Lipases can be 1,3 specific, removing fatty acids from position 1 and 3 and produce mono and –diglycerides
- Mono and diglycerides improve dough rheology, machinability, increase dough strength and stability
- Also helps in reducing stickiness of tortilla

Basri et al, 2006, Stauffer & Kamel, 2006

Lipases, Glycol & Phospholipases

Pomeranz, 1985

Lipase can work on both polar and non polar lipids

Additional Enzymes

Phytase (Nutritional Improvement)

- Phytic acid is present in bran
- Phytic acid adversely affects bioavailability of minerals (e.g., Zn²⁺, Ca²⁺, Mg²⁺)
- Phytase breaks down phytic acid into inositol and phosphoric acid

Asparaginase (Health Concern)

- Acrylamide is classified as probable human carcinogen
- Formed via Maillard reaction between asparagine and a carbonyl source
- Asparaginase catalyzes hydrolysis of asparagine into aspartic acid and ammonia

Gisela Maria Dellamora-Ortiz et al., 2013

Benedito et al., 2001

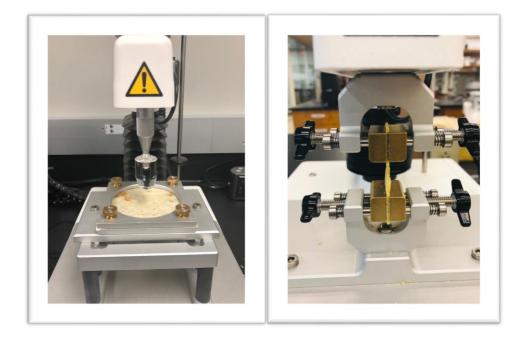
Enzyme Blending (Premixes)

- Enzymes are mostly used in combinations to give synergistic effects
- Added at very low concentration
- Diluted to very low concentrations
- Storage in a controlled atmosphere is critical
 - Enzymes are affected by temperature and moisture

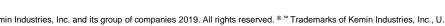
Enzyme Formulation

Kemin has rigorous screening and testing procedures

- Enzyme efficacy & performance evaluation is used to screen and select
- Enzyme performance testing
 - Lab scale
 - Mimic commercial trials
 - Shelf-life studies



Enzyme Formulation – Process Qualification


Enzyme blending to scale-up level is critical

- Process qualification criteria is important to confirm the blending operation
- Every batch is evaluated to ensure consistency
 - Enzyme activity
 - Performance test

© Kemin Industries, Inc. and its group of companies 2019. All rights reserved. [®] [™] Trademarks of Kemin Industries, Inc., U.S.A. Certain statements, product labeling and claims may differ by geography or as required by government requirements.

Kemin Products

- TillaPack[™] FSS: Batch pack with enzyme blend for Burrito Style Tortilla
- **TillaPack[™] GS:** Batch pack with enzyme blend for Gordita Style Tortilla
- **TillaSoft[™]:** Dough conditioner with enzymes & reducing agents
- **TillaZyme[™]:** Enzyme, gum blends

www.kemin.com

© Kemin Industries, Inc. and its group of companies 2019. All rights reserved. * Trademarks of Kemin Industries, Inc., U.S.A. Certain statements, product labeling and claims may differ by geography or as required by government requirements.

References

- 1. Anderson, C. and Simsek, S. (1991) What Are the Characteristics of Arabinoxylan Gels? Food and Nutrition Sciences, 9, 818-833
- 2. Anon (1988) Veron FD SUPER and Veron ESL New Developments for Modern Baking Technique. Enzyme-Report, Roehm-Enzymetechnologie, p. 13.
- 3. Delcour, J.A., Joye, I.J, Wilderjans, B.P.E., Brijs, K., Lagrain, B. 2012. heat gluten functionality as a quality determinant in cereal-based food products, Ann. Rev. Fd.Sc.Tech, Vol3, 469-492
- 4. Haarasilta, S., Vaeisaenen, S. and Pullinen, T. (1991) A new generation dough conditioner combination of oxidative and hydrolytic enzymes. *76th AACC Annual Meeting*, October 1991, Poster (Abstract no. 146).
- 5. Goesaert H, Slade L, Levine H, Delcour JA. Amylases and bread firming an integrated view. Journal of Cereal Science 2009;50(3) 345–352.
- 6. Hammer, R. J. (1992). Enzymes and the baking industry: Friends or foes? In *Cereal Chemistry and Technology: A Long Past and Bright Future*, ed. P. Feillet, Institut National de la Recherche Agronomique, 9th International Cereal and Bread Congress, Paris, 1992.
- 7. Haros, M., Rosell, C. M., Benedito, C. 2001. Use of Fungal Phytase to Improve Breadmaking Performance of Whole Wheat Bread. J.Ag. Fd. Chem. 49 (11), 5450-5454
- 8. Kulp, K. 1993. Enzymes as day improvers: In Advances in Baking Technologym. (Eds Kamel, B.S. and Stauffer, C. E.) Published: Chapman Hall., pp 159-178
- 9. Miguel, A.S.M., Meyer, T.S.M., Figueiredo, V.D.C., Lobo, B.W.P., Ortiz, G.M.D. 2013. Enzymes in Bakery: Current and Future Trend, Peer reviewed open access book
- 10. Oart, M.V. 2010. Enzymes in bread making. In: Enzymes in Food Technology (Eds. Oart, M.V, Whitehurst, R. J). Willi Blackwell, Blackwell Publishing Ltd, Iowa pp. 17-33
- 11. Pomeranz, Y. 1985; Functional properties of Food Component. Academic Press Inc. Orlando, Fl.
- 12. Purich, D. L. 2011. Factors influencing enzyme activity. In:Enzyme Kinetics: Catalysis and Control: A Reference of Theory and Best-Practice Methods 1st Edition, Elsevier Science Publishing Co Inc, US, pp 379-483
- 13. Weegels, P.L., Hamer, R.J.; Schofield, J.D. 1997. Breakdown and rebuilding of gel protein during dough mixing and dough rest. Depolymerization and repolymerization of wheat gluten during dough processing II. Changes in composition. J. Cereal Science 155-263.
- 14. Shin, M., Gang, D. O., & Song, J. Y. (2010). Effects of protein and transglutaminase on the preparation of gluten-free rice bread. Food Science & Biotechnology, 19, 951–956.
- 15. Plant Foods Hum Nutr (2000) 55: 15. https://doi.org/10.1023/A:1017237631105
- 16. Wieser H. Chemistry of gluten proteins. Food Microbiology 2007;24(2) 115–119.

© Kemin Industries, Inc. and its group of companies 2019. All rights reserved. * Trademarks of Kemin Industries, Inc., U.S.A. Certain statements, product labeling and claims may differ by geography or as required by government requirements.