Bakery Enzymes in Tortilla Applications
(Effect of Enzymes on Tortillas)

BY:
Shima Agah, Ph.D
Allied Blending LP

R&D Food Scientist
September 6th, 2018
Amsterdam Holland
Tortillas

• Tortillas have become very popular baked products world wide.
• Because of versatility, functionally, and convenience as wraps.
• The low cost of tortillas, ease of preparation and range of options for customers are key drivers for strong industry.
• Customers prefer tortillas that are flexible, opaque, large and have long shelf life.
• Stale tortillas are firm and crack when folded. Thus, becoming unacceptable for customers.
• Functional Ingredients and additives such as enzymes are added to tortilla formulation to provide desirable attributes.

(Jondiko et al., 2016 & Tuncil, et al., 2016)
• Enzymes

• Naturally occurring components from plant, animal and microbial origins.

• They are specific, efficient and biodegradable and have unique 3-D shapes.

• Within the three dimensional structure are cavities that fit lock and key with a substrate molecule - another protein, fat or carbohydrate.

• The perfect match between the enzyme and substrate will result in a specific chemical reaction to occur to the substrate molecule.

(Panesar et al., 2010 & Illanes, A., 2008)
Enzymes

(Panesar et al., 2010., Arora, S., 2003 & Illanes, A., 2008)
• Factors Affecting Enzyme Activity

- pH
- Temperature
- Water Activity
- Ionic Strength
- Enzyme Dosage

- Presence of different molecules:
 - Inhibitors
 - Stabilizers
 - Oxygen

(Panesar et al., 2010, Arora, S., 2003 & Illanes, A., 2008)
• Enzymes in Bakery Products

• Wheat flour is the primary ingredient.

• Flour is mainly composed of starch and protein.

• Baking enzymes are used to alter starch and protein properties.
 • Alter flour behavior in mixing.
 • Improve dough fermentation, handling, machinability properties.
 • Enhance dough mixing tolerance and mixing stability.

(Miguel et al., 2013 & Sanz Penella, et al., 2008)
• Enzymes in Tortillas

• Optimizing baking properties.
• Improving Product Quality.
• Staling is caused by chemical & physical changes after baking.

• Increasing firmness, dryness and loss of product freshness.

• Staling rate & shelf stability of tortillas depends on:
 • Formulation.
 • Processing & storage conditions.

• Despite using optimized time & temperature, tortillas still go stale.

(Alviola et al., 2008, Waniska, R., 1999)
• Enzymes in Tortillas

Wheat Flour Tortillas

- Flour tortillas are mainly composed of starch and protein.
- Hence, Flour tortilla enzymes are used to alter starch and protein properties.

Gluten /Starch Retrogradation Theory

- During cooling and aging, cross links between gluten and starch are formed (interaction).

Corn Tortillas

- Starch is the major component of corn tortillas, and only starch specific enzymes are used.

Starch Retrogradation Theory

- During cooling and aging, starch retrogrades from amorphous state to rigid crystalline state.

Ambient Storage (22°C)

Refrigeration Storage (3-10°C)

(Alviola et al., 2008, Waniska, R., 1999)
• **Enzymes Used in Tortillas**

- Enzymes are generally classified according to their target substrate molecules.
- α-Amylases are the main enzymes used to extend shelf stability at both corn and wheat tortillas.
- α-Amylases (EC 3.2.1.1) are endo-enzymes that catalyze the cleavage of α-1,4-glycosidic bonds in the inner part of the amylose or amylopectin chain.

<table>
<thead>
<tr>
<th>Oligosaccharides</th>
<th>α-limit dextrins</th>
</tr>
</thead>
</table>

- These enzymes can be obtained from cereal, fungal, bacterial and biotechnologically altered bacterial sources.

(Momma., M., 2000 & Miguel et al., 2013)
Enzymes Used in Tortillas (α-Amylases)

- **Malt ingredients** –
 - occur naturally in flours.
 - Seed germination produce alpha amylases.

- **Fungal Amylase** –
 - alpha amylase from fungal sources.
 - Mainly used to aid dough conditioning.
 - act on starches.
 - not heat stable.

- **Bacterial Amylase** –
 - more heat stable than fungal amylase.
 - Breaks down starch components even after baking.
 - Used to prevent staling during storage.

(Arora, S., 2003 & Miguel et al., 2013)
Enzymes Used in Tortillas (α-Amylases)

- Amylase from malt and fungal sources are easily deactivated by cooking and only function in the dough.

- Bacterial amylases are more heat stable and are more effective in preventing staling because they function in the finished product.
 - These enzymes are very active and have the tendency to go too far.
 - This non-stop activity can result in gummy texture and sticking of tortillas.
 - However, special types of bacteria were developed to produce amylases that work slightly different from those of unmodified organisms.

(Arora, S., 2003 & Miguel et al., 2013)
Enzymes Used in Tortillas
(Maltogenic α-Amylases)

- Exo-acting α-Amylase:
 - Maltogenic α-amylase (glucan 1,4-α-glucanhydrolase, EC 3.2.1.133).
 (Maltose).
 - Maltooligosaccharide forming amylases (EC 3.2.1.60).

Act on Gelatinized Starch

Optimum Temperature
(65-80 °C)

Deactivated Temperature
(90 °C)

Effective as anti-staling Agents

(Momma., M., 2000, Korbust et al., 2002 & Miguel et al., 2013)
• Proposed Theories for α-Amylases as Anti-staling Agents

1) The enzymatic shortening of amylopectin chain length reduces retrogradation tendencies of amylopectin.

2) The oligosaccharides (degree of polymerization (DP) 2-7) produced by exo-acting α-amylases are antistaling agents.

3) Production of low molecular weight dextrins interferes with the retrogradation of starch.

(Boyle et al., 1990, Martin et al., 1991 & Shi et al., 1995)
Other Enzymes Used in Tortillas

- **Hemicellulases** (cleavage of β-glycosidic linkages).
 - Hydrolyze a group of Nonstarch polysaccharides.
 - Nonstarch polysaccharides (pentosan, cellulose) hold water.
 - Water is vital for starch gelatinization & gluten development.
 - Prevent starch gelatinization & gluten formation resulting in less flexible tortillas.
 - Xylanase or endo-1,4-β-xylanase (4-β-D-xylan xylanohydrolase, EC 3.2.1.8) (Arabinixylan:Pentosans).
 - The cleavage caused by xylanase results in drastic changes in functional properties, water extractability and AX molecule weight.

(Collin et al., 2005 & Feussner, et al., 2012)
• **Other Enzymes Used in Tortillas**

 - **Oxidoreductases.**
 - Glucose-oxidase (β-D-glucose:oxygen:1-oxidoreductase; EC1.1.3.4) catalyzes the oxidation of β-D-glucose to D-glucono-δ-lactone and hydrogen peroxide.
 - Hydrogen peroxide as an oxidizing agent promotes the formation of disulfide bonds by oxidizing thiol groups (increasing crosslinking of gluten).
 - Stabilize the gluten network & improve elastic properties.

(Miguel et al., 2013 & Goesaert, et al., 2005)
Other Enzymes Used in Tortillas

Proteases.

- Used in wheat flour tortillas to mellow gluten activity (breaking peptide bonds):
 - Reduce dough mixing time.
 - Decrease dough consistency.
 - Reduce proofing time and dough balls resting time.
 - Enhance dough relaxation (replacement for reducing agents).

- Usage in corn tortillas is limited due to the disrupted structure of protein caused by high alkaline nixtamalization process.

(Miguel et al., 2013 & Goesaert, et al., 2005)
• Enzyme Combinations

• Each enzyme has its own specific substrate in corn & flour doughs.
• Interaction of the substrates in tortillas is complex.
• The enzyme combination can produce synergistic effect that are not seen if only one enzyme is used (even at high dosage).
• High dosage of enzyme has a detrimental effect on dough or baked tortillas.

(Di Cagno et al., 2003, Almeida, et al., 2012)
Enzyme Combinations

- Achieve maximum dough consistency and stability.
- Achieve maximum shelf stability and optimum tortilla quality in terms of moistness, flexibility, and cohesiveness.

(Di Cagno et al., 2003, Almeida, et al., 2012)
• ABI Research on Enzymes for Flour Tortillas

• We have extensively tested enzymes from different manufacturers.
• Objective: Evaluate potential functionality of enzymes in preventing staling, sticking and retaining softness and flexibility.
• Amylase A (specialized amylase with low usage rate):
 • Retains the softness and resilience.
 • Prevents staling without causing tortilla sticking and gumminess.
 • Extends shelf life.
• Amylase A works faster and requires a much lower usage rate than other enzymes tested.
• Thus, for flour tortilla applications, we use Amylase A in our BatchPak™, both for performance and cost effectiveness.
Enzymes for Flour Tortillas

Rollability Test

With Enzymes

Without Enzymes

Rollability Test

Allied Blending LP
Experimental Design of Enzyme Testing

Tortillas

Made using Amylase A (Control)

Made using sample enzymes

pH

Moisture

Appearance

Shape

Color

Taste

Ambient Temperature (22°C/72°F)

Storage Time (Day 8, 15, 21, 30, 40, 60)

Staling

Rollability

Surface

Softness

Texture

Sticking
• Comparison of Enzyme #1 Functionality versus Amylase A

CONTROL (60 Days) Rollability Test

Enzyme #1 (30 Days) Rollability Test

CONTROL (60 Days) Staling Test

Enzyme #1 (30 Days) Staling Test
• Comparison of Enzyme #1 Functionality versus Amylase A

• In 30 days storage test, enzyme# 1 did not show similar functionality to control in prevention of staling, sticking as well as maintaining softness, structure and resilience.

• Conclusion: enzyme# 1 activity is not comparable to control enzyme used in tortillas and may not be a good alternative.
• Comparison of Enzyme #2 Functionality versus Amylase A

CONTROL (60 Days) Rollability Test

CONTROL (60 Days) Staling Test

Enzyme #2 (60 Days) Rollability Test

Enzyme #2 (60 Days) Staling Test
• Comparison of Enzyme #2 Functionality versus Amylase A

In 60 days storage test, enzyme# 2 did not show similar functionality to control in prevention of staling; whereas, enzyme# 2 performed similar to control in preventing sticking and maintaining tortillas softness, structure, and resilience.

• Conclusion: enzyme# 2 activity is not comparable to control enzyme used in tortillas and may not be a good alternative.
• Comparison of Enzyme #3 Functionality versus Amylase A

CONTROL (60 Days) Rollability Test

Enzyme #3 (60 Days) Rollability Test

CONTROL (60 Days) Staling Test

Enzyme #3 (60 Days) Staling Test
• In 60 days storage test, enzyme #3 demonstrated similar functionality to control in prevention of staling, sticking as well as maintaining softness, structure and resilience.
• Conclusion: enzyme #3 activity is comparable to control enzyme used in tortillas and may be a good alternative.
• ABI Research on Enzymes for Flour Tortillas (Summary)

• In our ABI flour tortilla BatchPak™, enzyme functionality has been carefully optimized to provide the best results.

• Thus, aside from ensuring tortillas that remain flexible and rollable over extended storage, we can assure that sticking will not occur as well.

• We do this by supplementing the BatchPak™ with other thoroughly tested functional ingredients.
• ABI Research on Enzymes for Flour Tortillas (Summary)

• Our Enzyme technology can be delivered in two ways:
 • Enzymes in complete BatchPak™ formulations specifically designed to your own preference.

• Special blends of enzymes and other functional ingredients such as AB&I Flour Tortilla Improver to supplement your current formulations.
• Enzymes for Corn Tortillas

• Corn tortillas are basically made from nixtamalized corn and water.
• Through nixtamalization, corn starch has undergone pre-cooking.

• Most of the components from corn kernels go into the masa dough.
• Corn gluten is not as abundant nor as functional as wheat gluten. Thus, corn tortilla structure mainly depends on corn starch gel networks.

(Serna-Saldivar, S., 2015 & Bueso-Ucles et al., 2003)
• Enzymes for Corn Tortillas

• Corn tortillas stale faster than flour tortillas due to higher starch concentration and lower fat content in corn tortillas.

• Thus, while flour tortillas begin to lose flexibility after about 5 days, this will occur on corn tortillas a day after baking.

(Serna-Saldivar, S., 2015 & Bueso-Ucles et al., 2003)
• The role of amylase in corn tortillas is even more significant.

• Since starch in corn tortillas had been pre-gelatinized, it is a lot more sensitive to amylase activity than starch granules in dough of flour tortillas.

• Using an aggressive amylase will cause wet and sticky masa that will be difficult to sheet.

• An aggressive amylase in the tortilla can also cause the tortilla to disintegrate over a short time.

(Serna-Saldivar, S., 2015 & Bueso-Ucles et al., 2003)
• Enzymes for Corn Tortillas

Corn Tortillas 8 Days After Baking

No Enzymes

With Enzymes
• ABI Research on Enzymes for Corn Tortillas (Summary)

• For corn tortillas, we prefer to use Amylase B.
• It is a milder form of amylase compared to Amylase A.
• It does not cause adverse effects on masa dough consistency.
• It is effective in controlling the staling process in corn tortillas.
• While amylase activity helps maintain softer corn tortilla texture, it can also cause crumbliness. This effect can be corrected with use of other ingredients.
• ABI Research on Enzymes for Corn Tortillas (Summary)

• As in flour tortillas, ABI formulates to optimize the benefits of using enzymes by supplementing it with other carefully selected functional ingredients.

• AB&I Shelf Extend.

• SuperSoft®.

• AB&I Corn Tortilla Softener.

• AB&I Corn Tortilla Conditioner GC.

• AB&I Corn Tortilla CL Blend.
Conclusions

- Bakery enzymes can be used in both Flour and Corn Tortillas to improve product attributes.

- Enzymes open opportunities for tortilla manufacturing to create and promote healthier versions of tortillas and deliver a cleaner ingredient statement.

- AB&I R&D team delivers enzyme technology in multiple and various ways.

- BatchPak™, and AB&I Flour Tortilla Improver for Flour Tortillas.
- AB&I Shelf Extend, SuperSoft®, and other AB products for Corn Tortillas.
Our goal is to develop products the market demands with improved functionality and taste that meet and exceed customer preferences.
Acknowledgement

- Randy Schmelzel
- Dr John E. Fannon
- Dr Feliciano (Sonny) Bejosano
- Tara Perry
Questions?