Bakery Enzymes in Tortilla Applications (Effect of Enzymes on Tortillas)

> BY: Shima Agah, Ph.D Allied Blending LP

R&D Food Scientist September 6th, 2018 Amsterdam Holland

Tortillas

- Tortillas have become very popular baked products world wide. ٠
- Because of versatility, functionally, and convenience as wraps. ٠
- The low cost of tortillas, ease of preparation and range of options for ٠ customers are key drivers for strong industry.
- Customers prefer tortillas that are flexible, opaque, large and have long shelf ٠ life.
- Stale tortillas are firm and crack when folded. Thus, becoming unacceptable • for customers.
- Functional Ingredients and additives such as enzymes are added to tortilla • formulation to provide desirable attributes.

Allied Blending LP

(Jondiko et al., 2016 & Tuncil, et al., 2016)

• Enzymes

- Naturally occurring components from plant, animal and microbial origins.
- They are specific, efficient and biodegradable and have unique 3-D shapes.
- Within the three dimensional structure are cavities that fit lock and key with a substrate molecule - another protein, fat or carbohydrate.
- The perfect match between the enzyme and substrate will result in a specific chemical reaction to occur to the substrate molecule.

Allied Blending LP

• Enzymes

(Panesar et al., 2010., Arora, S., 2003 & Illanes, A., 2008)

Factors Affecting Enzyme Activity

Presence of different molecules:
Inhibitors
Stabilizers
Oxygen

(Panesar et al., 2010., Arora, S., 2003 & Illanes, A., 2008)

• Enzymes in Bakery Products

- Wheat flour is the primary ingredient.
- Flour is mainly composed of starch and protein.
- Baking enzymes are used to alter starch and protein properties.
 - Alter flour behavior in mixing.
 - Improve dough fermentation, handling, machinability properties.
 - Enhance dough mixing tolerance and mixing stability.

• Enzymes in Tortillas

- Optimizing baking properties.
- Improving Product Quality.
- Staling is caused by chemical & physical changes after baking.
 - Increasing firmness, dryness and loss of product freshness.
- Staling rate & shelf stability of tortillas depends on:
 - Formulation.
 - Processing & storage conditions.
- Despite using optimized time & temperature, tortillas still go stale.

(Alviola et al., 2008, Waniska, R., 1999)

• Enzymes in Tortillas

Wheat Flour Tortillas

- Flour tortillas are mainly composed of starch and protein.
- Hence, Flour tortilla enzymes are used to alter starch and protein properties.

Gluten /Starch Retrogradation Theory

 During cooling and aging, cross links between gluten and starch are formed (interaction).

Ambient Storage (22°^c)

(Alviola et al., 2008, Waniska, R., 1999)

Corn Tortillas

 Starch is the major component of corn tortillas, and only starch specific enzymes are used.

Starch Retrogradation Theory

• During cooling and aging, starch retrogrades from amorphous state to rigid crystalline state.

Refrigeration Storage (3-10°^c)

• Enzymes Used in Tortillas

- Enzymes are generally classified according to their target substrate molecules.
- α-Amylases are the main enzymes used to extend shelf stability at both corn and wheat tortillas.
- α-Amylases (EC 3.2.1.1) are endo-enzymes that catalyze the cleavage of α-1,4-glycosidic bonds in the inner part of the amylose or amylopectin chain.

Oligosaccharides

α -limit dextrins

• These enzymes can be obtained from cereal, fungal, bacterial and biotechnologically altered bacterial sources.

•Enzymes Used in Tortillas (α-Amylases)

- Malt ingredients
 - occur naturally in flours.
 - Seed germination produce alpha amylases.
- Fungal Amylase
 - alpha amylase from fungal sources.
 - Mainly used to aid dough conditioning.
 - act on starches.
 - not heat stable.
- Bacterial Amylase
 - more heat stable than fungal amylase.
 - Breaks down starch components even after baking.
 - Used to prevent staling during storage.

(Arora, S., 2003 & Miguel et al., 2013)

•Enzymes Used in Tortillas (α-Amylases)

- Amylase from malt and fungal sources are easily deactivated by cooking and only function in the dough.
- Bacterial amylases are more heat stable and are more effective in preventing staling because they function in the finished product.
 - These enzymes are very active and have the tendency to go too far.
 - This non-stop activity can result in gummy texture and sticking of tortillas.
 - However, special types of bacteria were developed to produce amylases that work slightly different from those of unmodified organisms.

(Arora, S., 2003 & Miguel et al., 2013)

• Enzymes Used in Tortillas

(Maltogenic α -Amylases)

- Exo-acting α -Amylase: ٠
 - Maltogenic α -amylase (glucan 1,4- α -glucanhydrolase, EC 3.2.1.133). (Maltose).
 - Maltooligosaccharide forming amylases (EC 3.2.1.60).

• Proposed Theories for α-Amylases as Anti-staling Agents

- 1) The enzymatic shortening of amylopectin chain length reduces retrogradation tendencies of amylopectin.
- The oligosaccharides (degree of polymerization (DP) 2-7) produced by exo-acting α-amylases are antistaling agents.
- 3) Production of low molecular weight dextrins interferes with the retrogradation of starch.

(Boyle et al., 1990, Martin et al., 1991 & Shi et al., 1995)

•Other Enzymes Used in Tortillas

- Hemicellulases (cleavage of β -glycosidic linkages).
 - Hydrolyze a group of Nonstarch polysaccharides.
 - Nonstarch polysaccharides (pentosan, cellulose) hold water.
 - Water is vital for starch gelatinization & gluten development.
 - Prevent starch gelatinization & gluten formation resulting in less flexible tortillas.
 - Xylanase or endo-1,4-β-xylanase(4-β-D-xylan xylanohydrolase, EC 3.2.1.8) (Arabinixylan:Pentosans).
 - The cleavage caused by xylanase results in drastic changes in functional properties, water extractability and AX molecule weight.

•Other Enzymes Used in Tortillas

Oxidoreductases.

- Glucose-oxidase(β-D-glucose:oxygen:1-oxidoreductase;EC1.1.3.4)
 catalyzes the oxidation of β-D-glucose to D-glucono-δ-lactone and hydrogen peroxide.
- Hydrogen peroxide as an oxidizing agent promotes the formation of disulfide bonds by oxidizing thiol groups (increasing crosslinking of gluten).
- Stabilize the gluten network & improve elastic properties.

Allied Blending LP

(Miguel et al., 2013 & Goesaert, et al., 2005)

•Other Enzymes Used in Tortillas

- Proteases .
 - Used in wheat flour tortillas to mellow gluten activity (breaking peptide bonds):
 - Reduce dough mixing time.
 - Decrease dough consistency.
 - Reduce proofing time and dough balls resting time.
 - Enhance dough relaxation (replacement for reducing agents).
 - Usage in corn tortillas is limited due to the disrupted structure of protein caused by high alkaline nixtamalization process.

(Miguel et al., 2013 & Goesaert, et al., 2005)

Enzyme Combinations

- Each enzyme has it's own specific substrate in corn & flour doughs.
- Interaction of the substrates in tortillas is complex.
- The enzyme combination can produce synergistic effect that are not seen if only one enzyme is used (even at high dosage).
- High dosage of enzyme has a detrimental effect on dough or baked tortillas.

(Di Cagno et al., 2003, Almeida, et al., 2012)

Enzyme Combinations

• Examples of lower dosages of enzyme combinations:

- Achieve maximum dough consistency and stability.
- Achieve maximum shelf stability and optimum tortilla quality in terms of moistness, flexibility, and cohesiveness.

•ABI Research on Enzymes for Flour Tortillas

- We have extensively tested enzymes from different manufacturers.
- Objective: Evaluate potential functionality of enzymes in preventing staling, sticking and retaining softness and flexibility.
- Amylase A (specialized amylase with low usage rate):
 - Retains the softness and resilience.
 - Prevents staling without causing tortilla sticking and gumminess.
 - Extends shelf life.
- Amylase A works faster and requires a much lower usage rate than other enzymes tested.
- Thus, for flour tortilla applications, we use Amylase A in our BatchPak[™], both for performance and cost effectiveness.

With Enzymes

Without Enzymes

Rollability Test

•Comparison of Enzyme #1 Functionality versus Amylase A

CONTROL (60 Days) Rollability Test

Enzyme # 1 (30 Days) Rollability Test

Enzyme # 1 (30 Days) Staling Test

• Comparison of Enzyme #1 Functionality versus Amylase A

- In 30 days storage test, enzyme# 1 did not show similar functionality to control in prevention of staling, sticking as well as maintaining softness, structure and resilience.
- Conclusion: enzyme# 1 activity is not comparable to control enzyme used in tortillas and may not be a good alternative.

•Comparison of Enzyme #2 Functionality versus Amylase A

CONTROL (60 Days) Rollability Test

Enzyme # 2 (60 Days) Rollability Test

• Comparison of Enzyme #2 Functionality versus Amylase A

- In 60 days storage test, enzyme# 2 did not show similar functionality to control in prevention of staling; whereas, enzyme# 2 performed similar to control in preventing sticking and maintaining tortillas softness, structure, and resilience.
- Conclusion: enzyme# 2 activity is not comparable to control enzyme used in tortillas and may not be a good alternative.

•Comparison of Enzyme #3 Functionality versus Amylase A

Enzyme # 3 (60 Days) Rollability Test

Enzyme # 3 (60 Days) Staling Test

• Comparison of Enzyme #3 Functionality versus Amylase A

- In 60 days storage test, enzyme# 3 demonstrated similar functionality to control in prevention of staling, sticking as well as maintaining softness, structure and resilience.
- Conclusion: enzyme# 3 activity is comparable to control enzyme used in tortillas and may be a good alternative.

•ABI Research on Enzymes for Flour Tortillas (Summary)

- In our ABI flour tortilla BatchPak[™], enzyme functionality has been carefully optimized to provide the best results.
- Thus, aside from ensuring tortillas that remain flexible and rollable over extended storage, we can assure that sticking will not occur as well.
- We do this by supplementing the BatchPak[™] with other thoroughly tested functional ingredients.

•ABI Research on Enzymes for Flour Tortillas (Summary)

- Our Enzyme technology can be delivered in two ways:
- Enzymes in complete BatchPak[™] formulations specifically designed to your own preference.
- Special blends of enzymes and other functional ingredients such as AB&I Flour Tortilla Improver to supplement your current formulations.

- Corn tortillas are basically made from nixtamalized corn and water.
- Through nixtamalization, corn starch has undergone pre-cooking.
- Most of the components from corn kernels go into the masa dough.
- Corn gluten is not as abundant nor as functional as wheat gluten. Thus, corn tortilla structure mainly depends on corn starch gel networks.

(Serna-Saldivar, S., 2015 & Bueso-Ucles et al., 2003)

- Corn tortillas stale faster than flour tortillas due to higher starch concentration and lower fat content in corn tortillas.
- Thus, while flour tortillas begin to lose flexibility after about 5 days, this will occur on corn tortillas a day after baking.

(Serna-Saldivar, S., 2015 & Bueso-Ucles et al., 2003)

- The role of amylase in corn tortillas is even more significant.
- Since starch in corn tortillas had been pre-gelatinized, it is a lot more sensitive to amylase activity than starch granules in dough of flour tortillas.
- Using an aggressive amylase will cause wet and sticky masa that will be difficult to sheet.
- An aggressive amylase in the tortilla can also cause the tortilla to disintegrate over a short time.

Corn Tortillas 8 Days After Baking

No Enzymes

With Enzymes

ABI Research on Enzymes for Corn Tortillas (Summary)

- For corn tortillas, we prefer to use Amylase B.
- It is a milder form of amylase compared to Amylase A.
- It does not cause adverse effects on masa dough consistency.
- It is effective in controlling the staling process in corn tortillas.
- While amylase activity helps maintain softer corn tortilla texture, it can also cause crumbliness. This effect can be corrected with use of other ingredients.

•ABI Research on Enzymes for Corn Tortillas (Summary)

- As in flour tortillas, ABI formulates to optimize the benefits of using enzymes by supplementing it with other carefully selected functional ingredients.
- AB&I Shelf Extend.
- SuperSoft®.
- AB&I Corn Tortilla Softener.
- AB&I Corn Tortilla Conditioner GC.
- AB&I Corn Tortilla CL Blend.

Conclusions

- Bakery enzymes can be used in both Flour and Corn Tortillas to improve product attributes.
- Enzymes open opportunities for tortilla manufacturing to create and promote healthier versions of tortillas and deliver a cleaner ingredient statement.
- AB&I R&D team delivers enzyme technology in multiple and various ways.
- BatchPakTM , and AB&I Flour Tortilla Improver for Flour Tortillas.
- AB&I Shelf Extend, SuperSoft®, and other AB products for Corn Tortillas.

Our goal is to develop products the market demands with improved functionality and taste that meet and exceed customer preferences.

Acknowledgement

- Randy Schmelzel
- Dr John E. Fannon
- Dr Feliciano (Sonny) Bejosano
- Tara Perry

Questions?

