

Tortilla Wheat Flour characteristics and quality

A. Dubat, Business development Director

adubat@chopin.fr

CHICIPIN TECHNOLOGIES

Who are we?

NIR process moisture measurement

- Animal food
- Paper converting
- Chemicals & Pharmaceuticals
- Human food
- Tobacco
- Wood
- Minerals
- Textiles
- Renewable energy

NIR offline analyzers

- Agricultural
 - Feed ingredients
 - Compound feed
 - Pet food
 - Oilseeds
 - Forage
- Food and Dairy
- Environmental & Industrial
 - Water
 - Soils

Methods and equipment for the analysis of characteristics of cereals and derivatives

- Sample preparation
- Compositional analysis
- Functional analysis
- Bin temperature monitoring

Instrumentation, reagents and tests

- Medical diagnostics
- Environment
- Food & beverage industries

Our Customers

CHOPIN Technologies customers come from across the cereal chain, from seed to finished product

- Breeders
- Traders
- Elevators
- Primary processing industries
 - Milling and malting
- Manufacturers of ingredients or additives for flour

- Baking industries, secondary processors
 - Bakers
 - Pasta producers
 - Snack producers
- Laboratories, Research Institutes, Universities

CHOPIN Technologies DNA: Innovation

Mixolab

Measures the characteristics of dough during mixing, heating and cooling determining the quality of starch and protein

Quatuor II

Automatic dockage tester for determination of seed impurities

Aquaneo

Moisture meters for the certified measurement of the moisture content of cereals and oilseeds

Mixolab 2

New generation of Mixolab

New generation of Alveograph, full version

AlveoPC

New generation of Alveograph, basic version

SRC CHOPIN

Automated measurement of the solvent retention capacity

2003 2005 2007 2009 2010 2011 2013 2014 2016 2017 2018

SDmatic

Analyzer of damaged starch in less than 10 minutes

Infraneo

Infrared analyzer for whole grains and powdery products

Infraneo JR

Infrared analyzer with a smaller capacity for whole grains and powdery products

RheoF4

Unique solution to analyze dough proofing properties

LabMill

Reproduces industrial mill productivity. Analyzes soft and hard wheat milling capacity

AmyLab FN

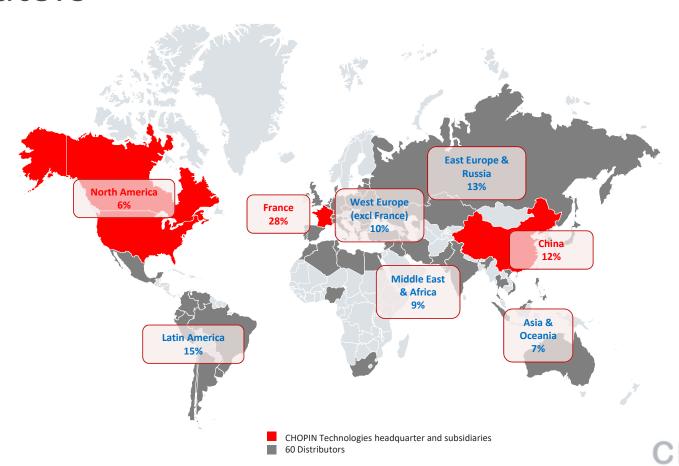
Faster method for prediction of Hagberg falling number value

Spectralab

High performance NIR analyzer designed for process control in flour mills

Quality: Our Priority

- CHOPIN Technologies operates a Quality Management System which complies with the requirements of <u>ISO 9001 : 2015 standard</u>.
- CHOPIN Technologies manufactures high quality equipment, recognized by numerous international organizations.
- CHOPIN Technologies takes part, as an expert, in different standardization groups.



Global presence, both direct and through distributors

Let's talk about Tortillas and Quality

Method Basis of the work supporting this presentation

- 1/ Our experience on flour quality and how to measure it
- 2/ Analysis of previous TIA Technical Conferences presentations
 - Steve Bright: 2017 (2), 2015 (2) & 2016
 - Cristina Primo Martin: (2017)
 - Tom Jondiko: (2016)
 - Dilek Austin: (2016)

Main flour quality - related identified control point

- Tortilla Size and Shape
- Rollability/Foldability/Flexibility
- Appearance for users
 - Cracks
 - Edges
 - Pillowing
 - Texture
- Stickiness
- Shelf Life

Tortilla Size and Shape

Tortilla too small

• Strong flour : Elastic

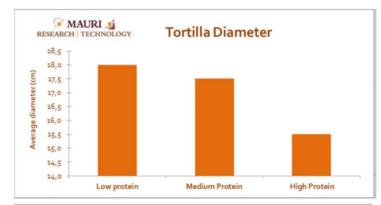
• Under mixed : Elastic

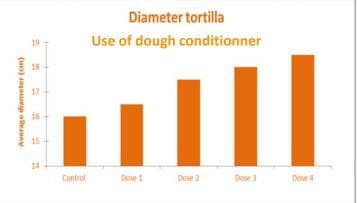
• Underhydrated : Elastic

 (Cold dough, under scaling, excessive floor time after mixing, poor press setup, oven shrinkage) Tortilla too large

- Overly extensible flour
- Flour quality
- Protein quantity/quality
- Overhydration

 (Over mixing, hot dough, high level of reducing agents, press too severe, high fat level, over scaling)


CHOPIN

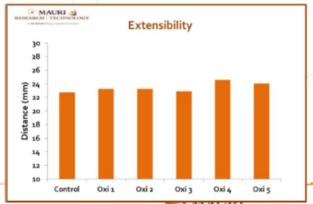

September 15, 2018

Source: Steve Bright TIA technical conference 2015

Tortilla Size and Shape

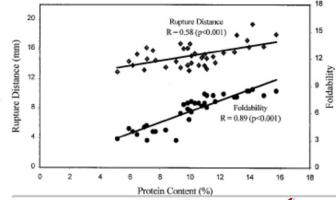
- Importance of Gluten Quality
 - Strong flour tend to produce tortillas with smaller diameter
 - Weak flour can give;
 - Thinner tortilla, less gaz retention
 - Severe Sticking
 - Fragile Tortilla, poor shelf stability
 - Poor shape (too large)

Sources: Steve Bright TIA technical conference 2015 Cristina Primo Martin TIA technical conference 2017


Tortilla Size and Shape

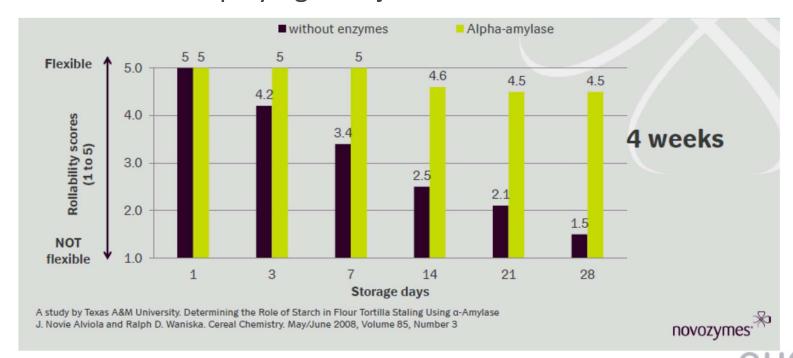
 By modifying gluten properties, proteases or oxydases are enzymes that help control

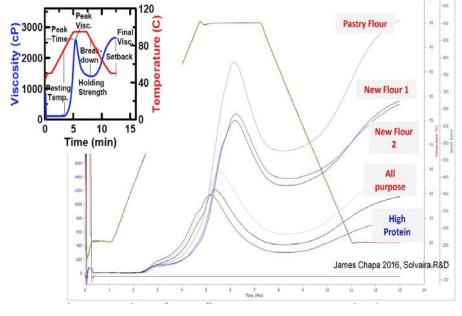
Tortilla diameter.


September 15, 2018

Rollability/Foldability/Flexibility

- Protein is important...
- Low Protein Content (<9%)
 - Tortilla cracks easily
 - Larger diameters
- Protein content >12%
 - Better foldability
 - But too long mixing & resting time
 - Smaller diameters


September 15, 2018


Rollability/Foldability/Flexibility

• ...and Starch is also playing a major role

Rollability/Foldability/Flexibility

 ...as well as starch quality and damage

Flour: Starch Quality

 Good quality tortillas produced using wheat flour of intermediate protein and low level of starch damage (Waniska et al 2004).

Starch characteristics:

- Measured using rapid visco analyzer.
- Peak and final viscosity.
- Affect cooking conditions.
- Tortilla flexibility.
- Tortilla shelf stability.

OLVAIDA SDECIALTIES

September 15, 2018


Sources : Cristina Primo Martin TIA technical conference 2017 Dilek Austin TIA Technical Conference 2016

Appearance for users

CRACKS

Low protein content (< 9%):</p>

o gives tortillas that crack easily,

*Enzyme: amylase

EDGES

Reducing agents

Used to aid pressing the dough to a desired size

- L-Cysteine
- Sodium metabisulfite
- Inactive yeast

Low use rates (ppm) cost effective.

Under use

- Small sizes
- Brittle, rough edges
- · Laced edges
- \$\$\$ Cost in rejects

September 15, 2018

Appearance for users

TEXTURE

PILLOWING

Texture properties can be affected by modifying starch structure: A limited starch breakdown is needed to give the tortillas the required strength and eating properties (bite, chewiness)

Strong Flour enhances pillowing gas retention

Sources : Steve Bright TIA Technical conference 2015 Cristina Primo Martin TIA technical conference 2017

Mouthfeel, bite

✓ Short tender bite
Established by formula and process

Lamination

From leavening

Not over pressed -pressure, dwell time, temperature

X Leathery, tough bite

High translucency
Insufficient leavening
Hot press
Extended press dwell times

September 15, 2018

Stickiness

- Dough Stickiness
 - Starch Damage, Protein quality
- Damaged starch: starch granules can be damaged during milling. They have a very high water absorption that can lead to stickiness and quality problems.

- Tortilla stickiness
 - Protein quality
 - Formulation (fat, sugar...)

Sticking - Reducing Agents

L-Cysteine and sodium metbisulfite

- · greater extensibility in the dough
- higher levels (>60ppm) lead to weak protein and crust resilience.
- · Increases the occurrence of sticking
- Obtain dough consistency through
- · full mix development
- · Optimizing flour to water ratio

Shelf Life

Wheat Flour - Starch

Changes occurring in the starch during baking affect their functionality:

- After gelatinization starch tends to regain crystalline structure: Retrogradation
- Negative effect on shelf life (staling): Fresh tortillas have good foldability but during storage, tortillas get harder and loss foldability.
 - Amylose retrogradates fast after baking (≈ 30-60 min)
 - Amylopectin retrogradation starts one day after baking

Preservative / Shelf Life Extenders

PRESERVATIVES - Low use rate

- Short shelf life
- Moldy tortillas

Gums

Added for shelf life extension and anti-sticking

- Many types of gums available
 - · Guar, Cellulose, Xanthan

Emulsifiers

Added for shelf life extension and anti-sticking

- Many types of emulsifiers available
- Monoglycerides, SSL, DATEM, Lecithin

Insufficient gluten (in flour and added as an ingredient)

- Thinner tortillas, less gas retention
- Severe sticking
- Fragile tortillas, poor shelf stability. No elasticity in the finished tortilla
- Poor shapes in the press, excessive sizes

Sources : Steve Bright TIA Technical conference 2015 Cristina Primo Martin TIA technical conference 2017

Summary Flour-related main control points

	Protein	Starch	Water
Size & shape	++++ (extensibility/Elasticity)		++ (Overhydration)
Rollability	+++ (Protein contentand quality)	++++ (Properties improved with Amylase action) +++ (Starch damage)	
Appearance	++++ (Cracks, Edges, Pillowing, Texture)	+++ (Cracks, texture)	++ (Pillowing)
Stickiness	++++ (Protein contentand quality)	+++ (Starch properties)	++ (Overhydration)
Shelf Life September 15, 2018	++++ (Protein contentand quality)	+++ (Starch Properties) +++ (Starch damage)	

Main flour component impacting Flour quality for Tortilla Production

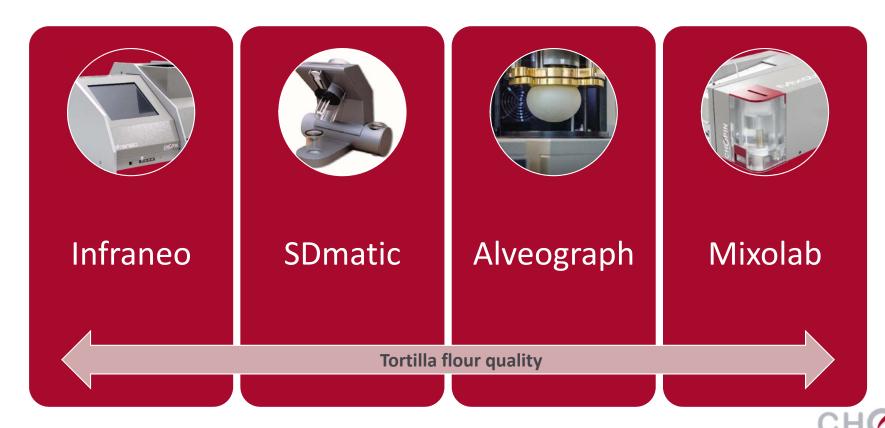
PROTEIN

Content, Strength, Elasticity, Extensibility

STARCH

• Properties (viscosity, retrogradation), starch damage

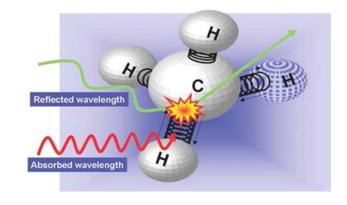
HYDRATION

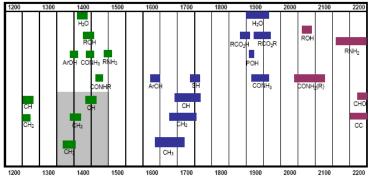

Protein content, starch damage

FORMULA

 How to test complete formula, can we test dough from the processing line?

Best potential tools

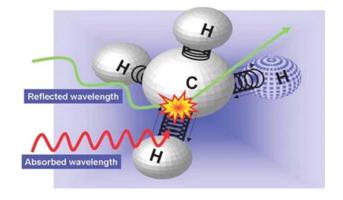


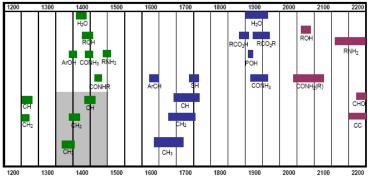


Reminder on NIR basics (1/2)

- NIR has many advantages :
 - Simplicity
 - Speed
 - Clean
 - Performances...

But keep in mind theses devices are measuring some light wavelength absorbed that depends on the vibration properties of some known chemical linkages (ex: NH for the protein).




Reminder on NIR basics (2/2)

The absorption peaks are mathematically analysed according to the sample concentration for the requested element to analyse (ex : proteins)

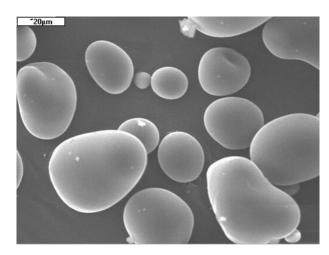
Important consequences:

- The infrared method relies on the accuracy of the reference method which is mirrored
- The more a parameter or a component is far for the regular NIR conditions, the more its estimation becomes difficult. The calibration developed for such components are giving « trends » results and can't be that accurate.

NIRS for Flour

	Specific absorption peaks ?	Relations with a component with a dedicated peak?	Comments
Moisture	Yes (many)	No	Measurement
Proteins	Yes (many)	No	Measurement
Wet Gluten	No	Direct (proteins)	Measurement
Water absorption capacity	No	Indirect (Proteins, starch)	Estimation
Ashes	No	indirecte (relation with Cellulose)	Estimation
Starch	Yes	No	Measurement

BEWARE of « calibrations » not based on sound science, these can be strongly misleading (Alveograph, bread volume... data for example)

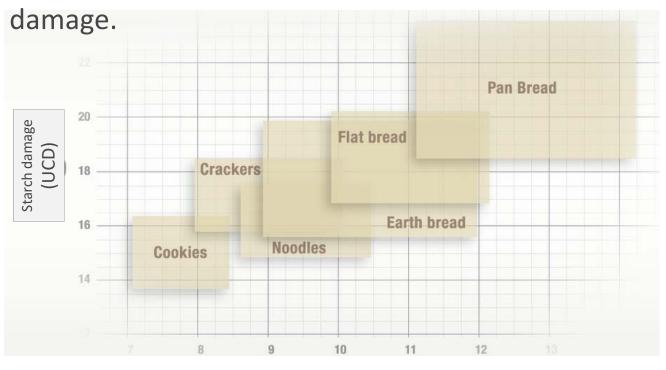

Measuring Starch Damage

1. Introduction - starch amylose and amylopectin

- Starch is semi crystalline structure composed of two polymers :
 - The grain kernel contains 65-70% starch
 - Starch is the main element of flour; from 68 to 72%

2. Starch Damage

- During milling, the starch granules are more or less damaged depending on:
 - Wheat hardness (genetic criteria)
 - Milling adjustments, including wheat tempering (mechanical criteria)



3. Why measure starch damage?

• For any product, there is an optimum level of starch

Proteins (%)

3. Why measure starch damage?

 A lack of control of starch damage may lead to several issues during product manufacturing.

Stickiness

Fermentation

Texture

Color

Cracks

3.1 Effects on water absorption

Protein absorbs 1.8 times its weight of water.

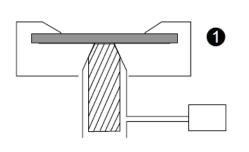
Pentosans :10 times

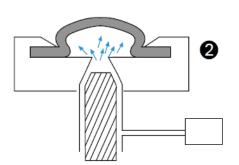
• Native starch : 0.4 times

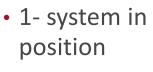
Damaged starch: 3 to 4 times

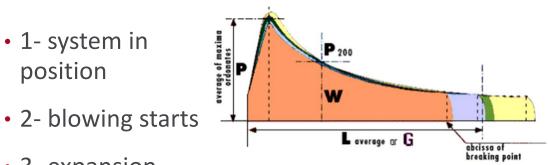
3.2 Effects on biscuits cracks

- An excess of starch damage causes:
 - Broken biscuits when packaging is opened!
 - Biscuit with colour defaults (too dark / too light)
 - Non standard size

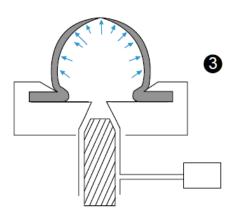


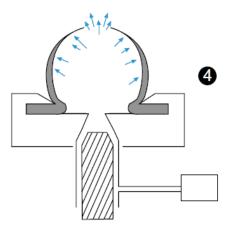

Dough Rheology: The Alveolab

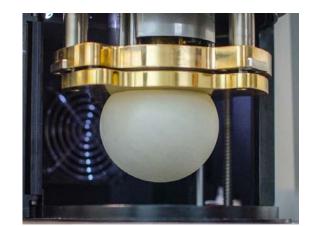


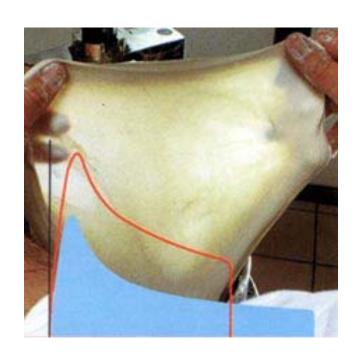


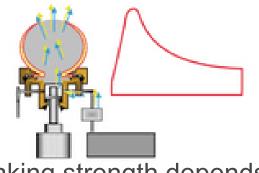
The Alveograph is all about Bubble!



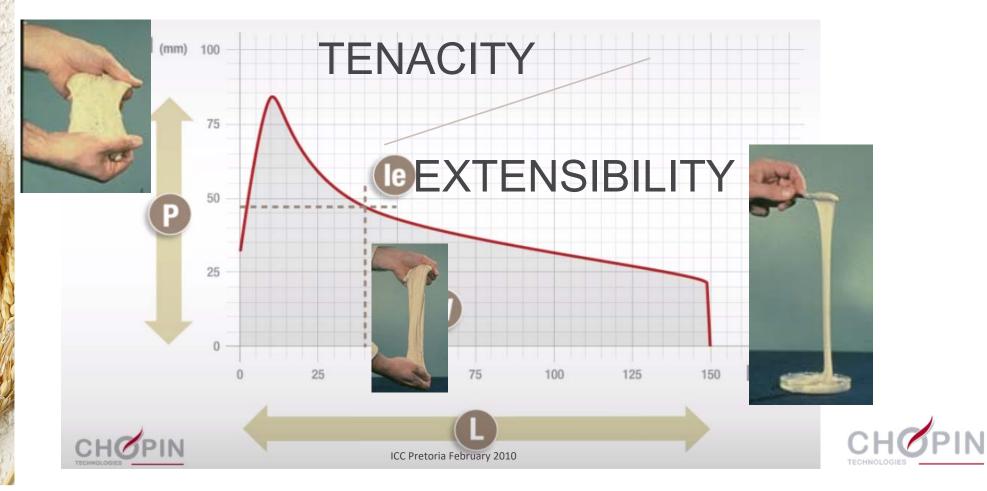







• 4- until bubble bursts

Flour Strength (W)

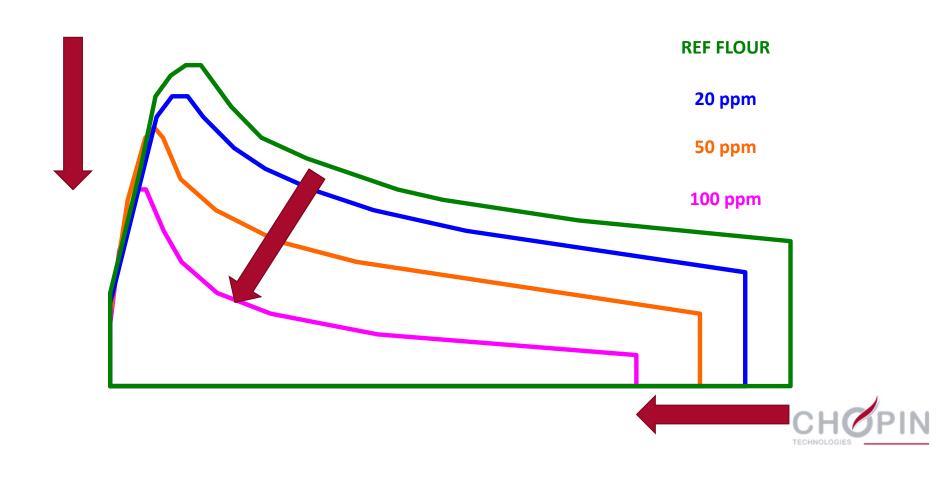

Baking strength depends on :

- -Protein quality and quantity
- -Starch damage
- Enzymatic activity
- -And more

-It is a « global view » it is always better to work on P, G and le.

Strength is composed of different aspects

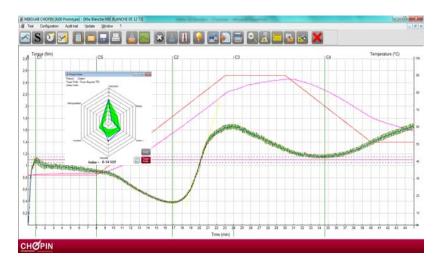
Elasticity (Ie)


- Elasticity is the hability of a dough to return to its original state when the stress disappears.
- It is measured on the alveograph 40 mm after the test beginning.
- At this time, trhe instrument has injected 200 ml of air inside the bubble.
- The volume of the bubble at this very moment indicates dough resistance to deformation which is a measure of elasticity

Focus on elasticity measurement

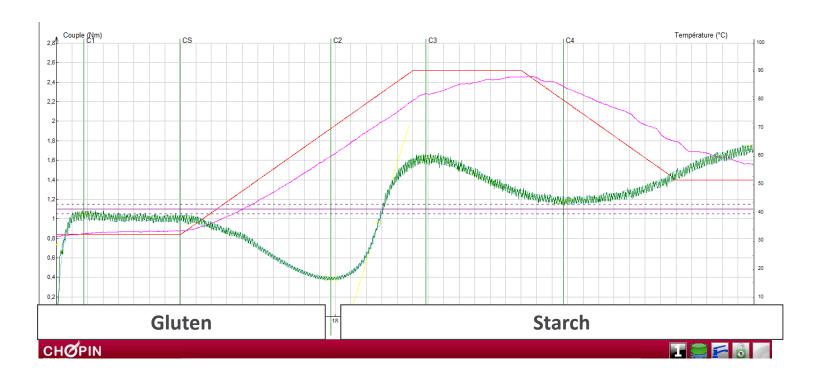
Processing aids action: example on Cysteine

Dough Rheology: The Mixolab



What is a Mixolab

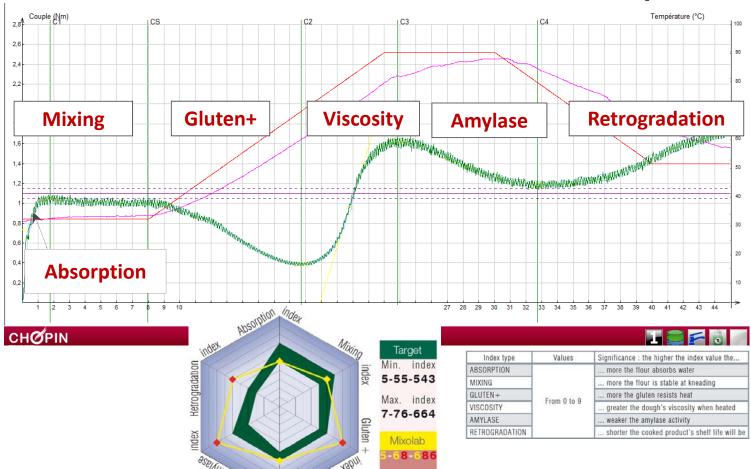
The Mixolab measures the characteristics of dough during mixing (water absorption, development time, stability, etc..) while evaluating the quality of


protein and starch.

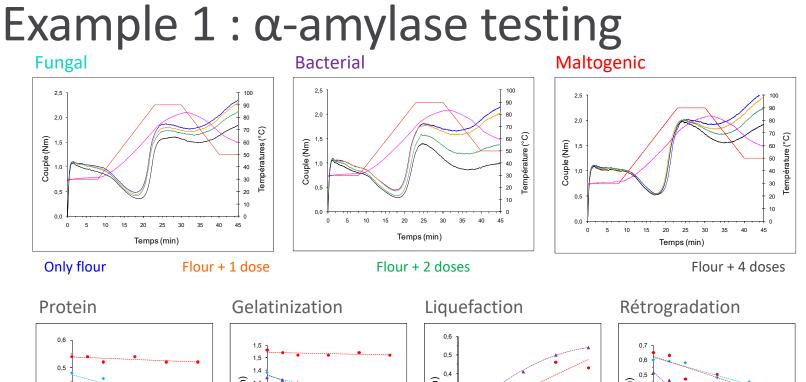
User benefits:

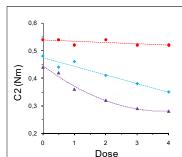
By heating up and cooling down the dough in one test, you have a very complete dough rheology analysis.

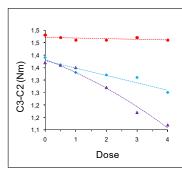
Standard Mixolab curve

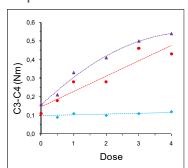


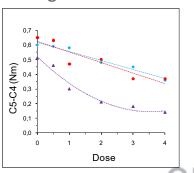
Compliant with

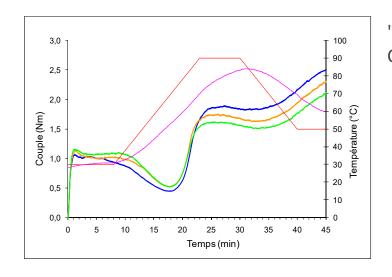

ICC 173/1; AACC 54-60-01; NF V03-765; ISO 17718:2013; GOST R 54498-2011

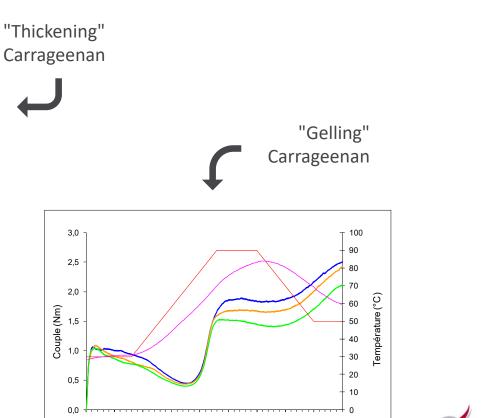



Mixolab Profiler: make it simple








Example 2: Gums testing

0,0 % carrageenan

0,5 % carrageenan

1,0 % carrageenan

Temps (min)

And why not testing a dough piece from the production line?

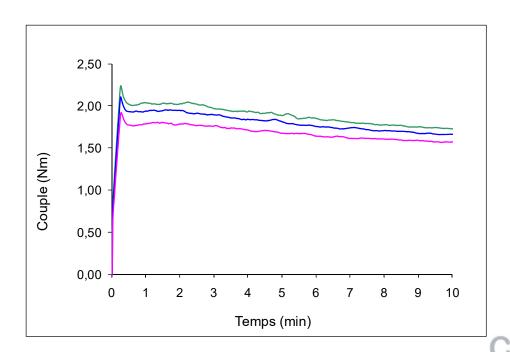
In this example, dough was taking from the industrial mixer while they
were looking at hydration impact on dough texture

Industrial mixer:

• Flour : 80 Kg

• Water: 36,2 L

• Water: 36,4 L


• Water: 36,8 L

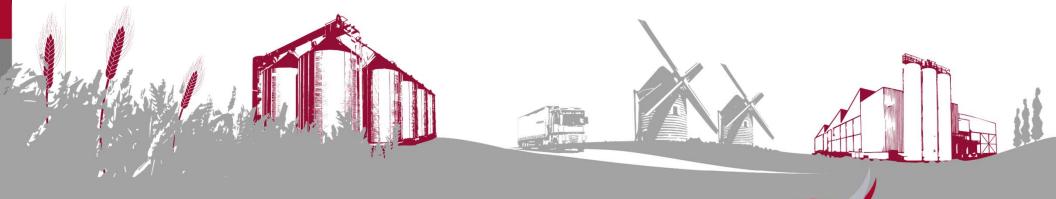
Mixolab:

Dough sample: 100 g

Rotation speed: 100 rpm

• Mixer temperature: 26°C

Remider: Flour-related main control points


	Protein	Starch	Water	
Size & shape	++++ (extensibility/Elasticity)		++ (Overhydration)	
Rollability	+++ (Protein contentand quality)	++++ (Properties improved with Amylase action) +++ (Starch damage)		
Appearance	++++ (Cracks, Edges, Pillowing, Texture)	+++ (Cracks, texture)	++ (Pillowing)	
Stickiness	++++ (Protein contentand quality)	+++ (Starch properties)	++ (Overhydration)	
Shelf Life September 15, 2018	++++ (Protein contentand quality)	+++ (Starch Properties) +++ (Starch damage)		

Take home message: Which device for controlling flour quality for Tortilla production?

Wheat Tortilla parameter	NIRS	SDMATIC	Alveolab	Mixolab
Size & shape			++++ Extensibility/Elasticity	+++ Hydration
Rollability	+ content	+++ High level	++++ Protein quality	++++ Amylase, starch damage
Appearance			+++++ Protein on crack, edges, pillowing, exture	+++++ Starch properties action on Cracks and texture
Stickiness	+ content	++ High level	+++ Protein quality	++++ Starch properties, hydration
Shelf Life	+ content	+++ High	++++ Protein quality	+++++ Starch properties and damaged starch
Ingredient evaluation			++++ Ready	++++ Ready
Work on complete formulas			++++ Ready	++++ Ready
Work on dough coming from production line			++ Possible	++++ Ready

www.chopin.fr

