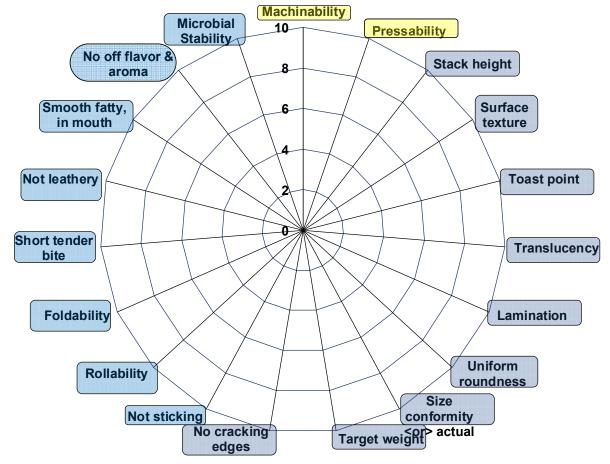
Identifying and Fixing Tortilla Problems



Steve Bright VP R&D, Quality Mesa Foods

Identifying Areas for Improvement

Troubleshooting Tortillas

Sticking

Toast Points

Edges

Shapes

Staling
Rollability / Foldability
Mouthfeel

Sticking – Package

Sticking Defined:

Two or more tortillas that will not separate from each other without tearing or ripping after being packaged for any period of time.

Sticking can be caused by several factors

Process

Ingredients

Formulation.

Sticking - Press Setup

Dry, stiff doughs require increased pressure, dwell time and temperature to obtain correct sizes

- ★ gelatinizes (cooks) starch, sets structure
- x activates all leavening creates top and bottom crust which holds in steam increasing the likelihood of pillowing (puffing)

Ideal press settings

- ✓ dwell time = $^{1.3}$ seconds +/-0.2
- ✓ pressure = ~ 1000 psi +/- 200
- ✓ temperature = $^{\sim}375 / 400 + / 25^{\circ}F$

Sticking -Baking Profile

Under baking
Excess residual moisture
Insufficient surface drying

- Over baking creates pillowing or puffing
 - top -thin crust separates from thick -bottom crust
 - thin crust and blisters are weak
 - X tear and flake

Over baking

Sticking Cooling room

Purpose of the cool down is to fully prepare the tortilla for packaging, transportation and storage

Typical cooler conditions

cool and HUMID, 35 - 40°F @80%+RH

Room is cool and wet causing mist / dew / fog to condense back on the tortilla

Cooler conditions must be adjusted to obtain:

Tortilla pack temperature +/- 10°F package room

Humidity < 60%RH − critical

Sticking - Packaging

Minimize temperature shifts after packaging promotes moisture migration

80°F packing into case

50 -100°F warehouse temperature

20 - 140°F truck shipping temperature winter / summer

70°F grocery store temperature

40°F consumer refrigeration

Avoid excessive compression

over-packing

excessive weight

Sticking -Ingredient causes

Flour - weak flour

poor gluten quality, although quantity may be available translates to:

poor dough process tolerance

weak baked film formation

poor resistance to compression

Strong Flour enhances pillowing gas retention

Sticking - Reducing Agents

L-Cysteine and sodium metbisulfite

- greater extensibility in the dough
- higher levels (>60ppm) lead to weak protein and crust resilience.
- Increases the occurrence of sticking
- Obtain dough consistency through
- full mix development
- Optimizing flour to water ratio

Sticking -Fat, Sugar

Tenderizers:

FAT

- As fat % increases, protein is diluted.
- Use higher melt point fats
- higher solids at room temperature
- Liquid oils remain liquid at room temperature enhances surface adhesion

SUGAR

- As sugar increases, hygroscopicity increases
- increases stickiness and tenderness.
- Dextrose, glucose, fructose and lactose are hygroscopic

Sticking -Water

Case Study

Tortilla plant ran water trials from 55% - 43%

Still had sticking at 43%

Its not the quantity of water that's the problem

Water is both a strengthener and a tenderizer

Hydrates protein

Temperature is critical to rate of hydration

Cooler = cold, dry, tight dough

Warmer = Sticky, extensible doughs

Water hardness+ 200ppm = tough doughs (mix, reducing agents)

< 50ppm = slack, sticky doughs

Tortilla Troubleshooting

- ✓ Balance of:
- √ Bake Time
- ✓ Zone Temperature
- ✓ Flame height
- ✓ Balance high fire / low fire gas pressure
- ✓ Dough ball size to weight ratio
- ✓ Fat level

Bake Time

- 1. 25 35 seconds
- 2. Typically try to run hotter faster
- 3. Lower dough weight to tortilla size ratio = bake faster
 - 28g 8" Tortilla bake at 25 seconds @ 425°F
 - 38g 8" tortilla bake at 30 seconds @ 425°F

Zone Temperature

- 1. Top belt usually 20 40 °F less than the middle
 - Middle is the face and most visible in package or wrap
- 2. Bottom belt is set to lowest setting or turned off
 - Too much heat on bottom belt leads to pillowing

Fat Level

- 1. High fat levels = bake faster
 - Better heat transfer
- 2. Lower fat levels = bake slower
 - Less efficient heat transfer

Size and shape

Tortilla Troubleshooting

Tortilla Size and shapes

Tortillas too small

Strong flour = elastic

Under mixed = elastic

Under hydrated = dry, elastic

Cold dough = elastic

Under scaling = insufficient mass / pressure

Excessive floor time after mixing / dough frequency

3 doughs per hour is the minimum rate

fresh dough every 20 minutes

= / > than 30 minutes per dough will cause the last part of the dough to become dry

Poor press set up

Oven shrinkage

Protein elasticity, insufficient press energy imparted to dough

Sizes Large

Overly extensible dough
Flour quality
Protein quantity / quality
Over mixing
Hot dough*
High levels reducing agents
Press — too severe
Excessive dwell time, pressure
High fat levels >12%
Over hydration
Over scaling

Edges

Brittle, flaky

Curling of the dough out of the press into the oven

Cupping caused by large temperature differential between top and bottom plates >25°F

Typically top plate hotter than bottom

Facilitates release

Facilitates transfer

Curled edges expose more surface area to heat

Creating toasted edges leading to dry, brittle flaky edges

Edges

Lacing

Caused by excessive cooking, structure of the dough is set prior to obtaining the desired size

Dough is cooked in the press, protein and starch are denatured preventing further mobility, before it gets to the final size

Elastic dough
Under hydrated
Under mixed
Low reducing agents

Consumer – organoleptic

Troubleshooting

Rollability / Foldability

Staling
Starch retrogradation

Over baking

Damaging starch protein

Lean Formula

Lower fat, sugar, gums and emulsifiers

Mouthfeel, bite

✓ Short tender bite

Established by formula and process

Lamination

From leavening

Not over pressed –pressure, dwell time, temperature

X Leathery, tough bite

High translucency

Insufficient leavening

Hot press

Extended press dwell times

Microbial Stability

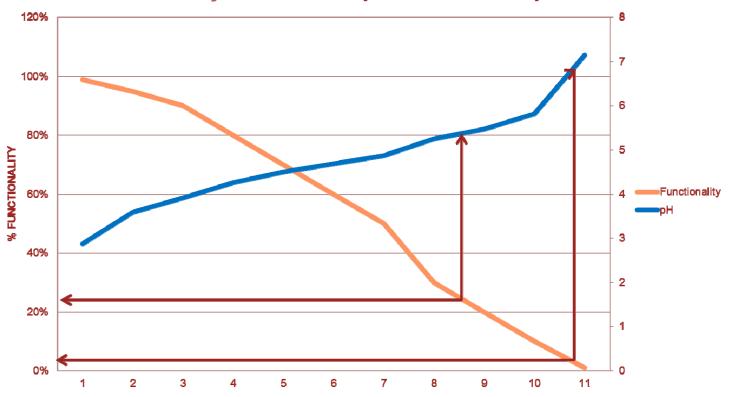
Balance between:

Shelf life expectations

рН

Preservatives

Homogenized ingredients



Microbial stability

Functionality of Calcium Propionate relative to pH

Thank You.

Questions?

