Mixing and Temperature Control

Common Mixers for Tortillas

- Spiral mixer
- Vertical mixer
- Horizontal mixer

Mixing of Doughs: Objectives

- Uniformly incorporate ingredients
- Hydrate all dry materials completely
- Develop the gluten for proper handling quality and gas retention

Undeveloped Gluten

Developed Gluten

Factors Which Affect Mixing Time: Machinery

- Speed of mixer (RPM)
- Mixer design
- Dough size / mixer capacity
- Adequacy of refrigeration

Factors Which Affect Mixing Time: Ingredients

- Flour (protein)
- Water absorption
- Amount of shortening
- Amount of soy protein
- Amount of reducing agents
- Amount of oxidizing agents

Why Is Temperature Control Important?

- Controls final product consistency
- Controls the rate of reaction in baking powders.
- Controls the consistency of the dough.
- Affects ingredients solubility.

Temperature Control

- TEMPERATURE CHANGES THAT OCCUR DURING THE MIXING OF A DOUGH CAN BE ATTRIBUTABLE TO TWO PRINCIPLE CAUSES:
 - 1. HEAT GENERATED BY THE FRICTIONAL FORCES.
 - 2. THE HEAT OF HYDRATION OF FLOUR.

Other Factors Affecting Temperature Control

- Temperature of ingredients.
- Size and type of mixing equipment.
- Batch size.
- Mixing procedures: time, speed, stages.
- Room temperature: summer, winter.

Ways to manage temperatures

- Ingredient temperatures.
- Chilled water/ice water
- Mix times
- Mixer refrigeration
- CO2 chilling systems

Friction Factor Calculation

Straight dough system formula:

 $FF = (3 \times A.D.T.) - (RT + FT + WT)$

ADT (Actual dough temperature

FF (Friction factor) FT (Flour temp.)

RT (Room temp.) WT (Water temp.)

Calculation of water temperature to give desired dough temperature

Straight Dough System

Cal
$$H_2O$$
 Temp. =

$$(3 \times D.D.T.) - (RT + FT + FF)$$

DDT (Desired dough temperature)

Calculation of Amount of Ice Needed to Give Desired Dough Temperature In Degrees Fahrenheit

Wt. of ice =

Wt. of H_2O (Tap H_2O Temp. - Cal. H_2O Temp.)

Tap H_2O Temp. + 112