

Extending Shelf Life of Frozen and Refrigerated Corn & Flour Tortillas

Prepared by: Sophia Leung, Malissa Keo & Dipak Roda

-

Division of Specialty Enzymes

Global Source for Enzymes & Probiotics

- Top 10 Global Producer of Enzymes & Probiotics
- 60+ Years of Manufacturing Experience
- 70+ Individual Enzymes
- 25+ Probiotics (Including Shelf & Heat-Stable)
- 400+ Solutions to Improve Processes, Save Time & Reduce Costs
- Non-GMO, Organic & Gluten-Free Products Available

Fresh Tortillas

Fresh tortillas are soft and can be rolled and folded without breaking.

Refrigerated & Frozen Storage

Benefits

Slows microbial growth

Challenges

Moisture migration

Staling

This Photo by Unknown Author is licensed under CC BY-NC

Fig. 21.3 Spiral freezer, self-stacking belt. (Courtesy of Frigoscandia Ltd.)

Source: Fellows, 2000

See References 1-3

Challenges – Mold

Mold may form on tortillas over time.

This Photo by Unknown Author is licensed under CC BY-ND

Challenges – Staling

As tortillas age and stale, they may become dry and hard and undesirably break when rolled and folded.

Challenge 1 – Moisture Migration

Moisture Migration – Refrigerated Storage

Moisture migration is a challenge due to condensation in refrigerated storage.

See References 2 and 4

Moisture Migration - Frozen Storage

Moisture migration is a challenge due to ice formation in frozen storage.

See References 1-2

Delaying Moisture Migration

Packaging

Processing

- Cooling
- Consistent Storage Conditions
- Formulation
 - Lower Water Activity
 - Emulsifiers
 - 🧇 Gums
 - Enzymes

See References 1-4

Delaying Moisture Migration - Packaging

Corn Tortillas - Refrigerated Storage

Flour Tortillas - Refrigerated Storage

1 Mil Bag (Twist Tie)

4 Mil Bag (Zipper Closure)

1 Mil Bag (Twist Tie)

A thicker package, better seal and less headspace can help delay moisture migration in refrigerated tortillas.

Delaying Moisture Migration - Packaging

Corn Tortillas - Frozen Storage

1 Mil Bag (Heat Seal)

4 Mil Bag (Heat Seal)

A thicker package, better seal and less headspace can also help delay moisture migration in frozen tortillas.

Delaying Moisture Migration – Cooling

- Cooler air holds less moisture
- Cool tortillas sufficiently before packaging to minimize condensation

See References 1-2

Delaying Moisture Migration – Rate of Freezing

Slow Freezing

Rapid Freezing

Rapid freezing results in smaller ice crystals and helps minimize damage to frozen food.

See References 5 and 1

Delaying Moisture Migrations – Storage Conditions

Fluctuations in storage temperatures can cause larger ice crystals to be formed.

See References 1, 5, and 6

Delaying Moisture Migration - Storage Conditions

Minimize fluctuations in storage temperatures to help minimize moisture migration.

See References 1 and 5

Delaying Moisture Migration – Storage & Ingredients

- Frozen food stored below Tg' is more stable to ice recrystallization
- Cryostabilizers e.g. maltodextrins, proteins, gelatin, gums

Foods	Tg' (°C)
Potato starch	-5
Cod muscle	-11.7 +/- 0.6
Beef muscle	-12 +/- 0.3
Fresh potato	-12
Sweetcorn, fresh	-15
Maltodextrins, 15 DE	-16
Cheddar cheese	-24
lce cream	-31 to -33
Sucrose	-32
Glucose	-43
Glycerol	-65

Tg' data compiled from References 2, 5, and 6

Challenge 2 – Staling

What Causes Staling?

Moisture O Protein Starch

See References 1-2 and 7-10

These Photos by Unknown Author is licensed under CC BY-NC

Starch Plays a Major Role in Staling

Ways to Delay Staling

- Minimize Moisture Migration
 - Packaging
 - Storage conditions
 - Ingredients
 - Degree of bake
- Minimize Reassociation of Starch & Protein
 - Storage conditions
 - Ingredients
 - Emulsifiers
 - Gums
 - Enzymes

See References 1-2 and 7-10

Delaying Staling – Degree of Bake

Shorter bake – minimizes moisture loss, which helps delay staling

This Photo by Unknown Author is licensed under CC BY-NC-ND

See References 2

Delaying Staling – Storage Conditions

- "Rapid Staling Zone" -5°C (23°F) to 10°C (50°F)
 - Refrigeration speeds up staling
- For frozen tortillas, minimize time in "rapid staling zone" by freezing and thawing quickly
- For tortilla chips, refrigeration before frying may be beneficial

See References 1 and 3

This Photo by Unknown Author is licensed under CC BY-SA

Delaying Staling – Emulsifiers

Weight and the second secon

Interact with linear starch chains

Make initial softness softer

See References 11-12

Delaying Staling – Gums

- Heteropolysaccharides
 - Sources include seaweed & exudates of plants, and endosperm of certain plants
- Can absorb & bind water
- Prevents loss of water, which can extend shelf life

See Reference 11

Delaying Staling – Enzymes

Proteins that speed up chemical reactions

Certain enzymes can help delay staling
Amylases – delay starch retrogradation

- Phospholipases improve emulsifying properties
- Xylanases act on arabinoxylans

High-Performing Maltogenic Amylase

Benefits

- Increases water binding
- Prolongs softness & maintains elasticity/resilience
- Extends shelf life by delaying staling
- Helps produce softer, superior-quality baked goods
- Function | Hydrolyzes maltotriose to maltose & glucose
- Itigh-Performing Maltogenic Amylase | SEBake Fresh Ultra™

Tortillas – 1.5 Months Refrigerated

Control Corn Tortillas (No Enzymes)

Control Flour Tortillas (No Enzymes)

Corn Tortillas with 100ppm SEBake Fresh Ultra™

Flour Tortillas with 100ppm SEBake Fresh Ultra™

SEBake Fresh Ultra[™] improved the rollability and foldability of refrigerated tortillas.

Tortillas – 3 Months Frozen

Control Corn Tortillas (No Enzymes)

Control Flour Tortillas (No Enzymes)

Corn Tortillas with 100ppm SEBake Fresh Ultra[™]

Flour Tortillas with 100ppm SEBake Fresh Ultra[™]

SEBake Fresh Ultra[™] improved the rollability of frozen corn tortillas.

Corn Tortillas - 15 Month Frozen Storage

Control (No Enzymes)

With SEBake Fresh Ultra™

Tortillas with SEBake Fresh Ultra[™] were significantly more flexible and had less curling than control tortillas after 15 months of frozen storage.

Corn Tortilla Firmness – 15 Months Frozen Storage

Corn tortillas with SEBake Fresh Ultra[™] were 30% softer than control after 15 months of frozen storage.

Corn Tortilla Rollability - 15 Months Frozen Storage

Control (No Enzymes)

With SEBake Fresh Ultra[™]

Tortillas with SEBake Fresh Ultra[™] stayed intact better when rolled than control tortillas after 15 months of frozen storage.

Phospholipase

- Benefits
 - Replaces emulsifiers like DATEM, SSL
 - Can prolong softness in tortillas by improving emulsifying properties
 - Whiter & finer crumb, and may increase volume (in bread)
- Function | Hydrolyzes natural phospholipids to lyso-phospholipids
- Phospholipase | SEBake PF[™]

Corn Tortilla Rollability - Day 150 Refrigerated

Control (No Enzymes)

With SEBake Fresh Ultra[™] + SEBake PF[™]

Tortillas with SEBake Fresh Ultra[™] and SEBake PF[™] stayed intact better than control tortillas after 150 days of refrigerated storage.

Tortilla Size - Day 150 Refrigerated

Diameter (inches)	Control	50ppm SEBake Fresh Ultra™	50ppm SEBake Fresh Ultra™ + 10ppm SEBake PF™	50ppm SEBake Fresh Ultra [™] + 20ppm SEBake PF [™]
Day 1	5.4	5.5	5.5	5.5
Day 150	4.9	5.4	5.5	5.5

Tortillas with SEBake Fresh Ultra[™] and SEBake Fresh Ultra[™] + SEBake PF[™] retained their size better than control tortillas after 150 days of refrigerated storage.

Summary

- Refrigerated & frozen storage helps extend freshness of tortillas
- Moisture migration & staling can negatively affect the quality of refrigerated and frozen tortillas
- To extend the shelf life of refrigerated & frozen tortillas, a combination approach can be utilized to maximize benefits by making changes in formulation, processing and packaging to minimize moisture migration and staling

Tips to Keep Frozen & Refrigerated Tortillas Fresh

- Minimize moisture migration
 - Thicker packaging with stronger seal
 - Sufficient cooling before packaging
 - Cool/freeze/thaw tortillas quickly
 - Minimize fluctuations in storage temperatures
 - Ingredients to bind moisture
 - Shorter bake time
- Minimize movement of starch & protein
 - Frozen storage (if possible)
 - Emulsifiers
 - Gums
 - Enzymes

References

- 1. Mallett, C. P. (1993). Frozen Food Technology. Cambridge, Chapman & Hall.
- 2. Rooney, L. W., and Serna-Saldivar, S. O. (2015). Tortillas: wheat flour and corn products. St. Paul, AACC International, Inc.
- 3. Leung, H. K. (2010). Food Preservation Technology Freezing of Food. Hong Kong Polytechnic University.
- 4. Bowser, T. (2016). Strategies to Reduce Moisture Condensation in Food Facilities, Food Technology Fact Sheet, Oklahoma State University. FAPC-203. https://extension.okstate.edu/fact-sheets/printpublications/fapc-food-and-agricultural-products-center/strategies-to-reduce-moisture-condensation-infood-facilities-fapc-203.pdf
- 5. Fellows, P. J. (2000). Food Processing Technology Principles and Practices, 2nd edition. CRC Press.
- 6. Pyler, E. J., Gorton, L. A. (2009). Baking Science & Technology, Vol. II: Formulation & Production, 4th edition. Kansas City, Sosland Publishing Co.
- Fadda, C., Sanguinetti, A. M., Del Caro, A., Collar, C., & Piga, A. (2014). Bread staling: updating the view. Comprehensive Reviews in Food Science and Food Safety, 13, 473-492. https://doi.org/10.1111/1541-4337.12064
- 8. Hoseney, R. C. (Ed.). (1996). Principles of cereal science and technology, 1st edition. St. Paul, MN: AACC.
- 9. Schoch, T. J., and FRENCH, D. (1947). Studies on bread staling. I. The role of starch. Cereal Chemistry. 24:231.
- 10. Schoch, T. J. (1965). Starch in bakery products. Baker's Dig., 39(2), 48.
- 11. Fennema, O. R. (1996). Food Chemistry, 3rd edition. New York, Marcel Dekker.
- 12. BAKERpedia. (Accessed online 2024). Emulsifiers, https://bakerpedia.com/ingredients/emulsifiers/
- 13. Whitaker, J. R. (1994). Principles of enzymology for the food sciences, 2nd edition. New York, Marcel Dekker, Inc.

Baking & Milling Solutions

Ingredient	Products	Benefits
High-Performing Maltogenic Amylase	SEBake Fresh Ultra [™]	Prolong Softness, Extend Shelf Life
Maltogenic Amylase	SEBake Fresh 1.5P™ SEBake Fresh 10P™	Prolong Softness, Extend Shelf Life
Multienzyme Blend	SEBake Fresh [™]	Prolong Softness, Extend Shelf Life
Hemicellulase / Xylanase	SEBake AX [™] , SEBake BX 5 [™] , SEBake FX Ultra [™]	Smooth Dough Handling, Increase Volume, Flour Correction
Phospholipase	SEBake PF™	Emulsifier Replacement, Improve Whiteness
Fungal Amylase	SEBAmyl X100P™ SEBAmyl X5P™	Increase Volume, Softness
Lipase	SEBake L80™	Dough Strengthening, Improve Machinability, Increase Volume

Baking & Milling Solutions

Ingredient	Products	Benefits
Glucose Oxidase	SEBake GO [™] / GO Eco™	Increase Dough Strength & Flour Stability Replace Potassium Bromate
Glucoamylase	SEBake GA 400™	Replace Sugars, Increase Volume
Cellulase	SEBake CLX [™]	Increase Volume in High Fiber Bread
Protease	SEBake NP™	Increase Dough Extensibility Gluten Correction in Sweet Biscuits
Protease & Xylanase	SEBake Crisp Plus [™]	Gluten Correction / Batter Viscosity Reduction
Papain	SEBake PP™	Gluten Correction in Fermented Biscuits, Cookies
Phospholipase	SEBake EG6 [™]	Egg Reduction in Cakes

Thank You!

13591 Yorba Ave. Chino, CA 91710 USA 909-203-4620 EnzymeInnovation.com